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Nonlinear radiation trapping in an atomic vapor excited by a strong laser pulse
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We investigate radiation trapping in an atomic vapor which has been excited by a strong short laser pulse.
Since the saturation of the vapor by the pulse leads to a decrease in the effective absorption coefficient, the
radiation trapping becomes nonlinear. We derive approximateanalytical expressions for the excited-state
density in the directly excited region, the fluorescence-excited region, and the density averaged over the whole
cell. Starting out from fairly simple approximate expressions based on a prescribed distribution of excited
atoms, we then develop physically motivated correction factors that drastically improve the accuracy. All these
expressions are given for three important cell geometries: the plane-parallel slab, the infinite cylinder, and the
sphere. We compare our results to accurate numerical solutions, and find agreement within 5–10%. We then
derive the decay time of the emergent radiation, and find that it can be smaller than the natural lifetime of the
excited atoms, in agreement with recent experimental results obtained for sodium vapors.
@S1063-651X~97!00202-X#

PACS number~s!: 51.70.1f, 95.30.Qd, 32.80.Pj, 32.50.1d
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I. INTRODUCTION

When an excited-state atom decays to the ground-sta
emits a resonance photon. Such a photon can be absorb
another ground-state atom, leading to the creation of ano
excited-state atom. In an atomic vapor cell, this absorp
and reemission can be repeated many times until the ph
escapes from the cell. The process is known as ‘‘radia
trapping’’ @1#. Obviously, it depends strongly on the absor
tion coefficient of the atoms in the vapor. It is of great inte
est in chemical physics@2#, and has been studied extensive
for more than 70 years. Most of the investigations assume
weak excitation of the vapor, e.g., by collisions with ele
trons, or radiation from discharge lamps~see, e.g.,@3–7#!.
The distribution of excited-state atoms can be compu
from an integrodifferential equation, the so-called Holste
equation~also known as the Biberman-Holstein equatio!.
Under the assumption of weak excitation, it is alinear equa-
tion.

When an atomic vapor is excited by a very strong la
beam tuned to a resonance transition, the vapor beco
saturated; i.e., the ratio of ground-state atoms and exci
state atoms becomes equal to the ratio of the statis
weights of these levels. This means also that the stimula
emission becomes equal to the absorption, so that the

*Also at Dipartimento di Fisica della Materia e Tecnologie F
siche Avanzate, Universita` di Messina, Salita Sperone 31, I-9816
Sant’Agata, Italy.
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fective’’ absorption becomes zero, obviously leading to
vanishing of the radiation trapping effects.

One situation that is of particular interest to experime
in chemical and photoplasma physics is the following:
excite part of the vapor cell by a very strong, short las
pulse. Subsequently, we observe the excited-state distr
tion and the emergent radiation. As time passes, more
more atoms will decay to the ground state by natural dec
so that the effective absorption coefficient increases. Ho
ever, some of the fluorescence photons are reabsorbed, w
diminishes the increase in the effective absorption coe
cient. This interrelation causes a strong nonlinearity in
Holstein equation.

Investigation of the nonlinear Holstein equation is a re
tively new field. While the effects of saturation on radiatio
trapping in steady-state vapors and plasmas have been
ied for 30 years because of their importance in astrophy
~@8# and references therein!, nonlinear time-decay phenom
ena have received attention only recently, due to the wi
spread use of powerful pulsed lasers. Previous investigat
of this problem have used purely numerical methods: Mo
Carlo simulations@9,10#, numerical solutions of the equatio
of radiative transfer, coupled with rate equations@11#, or
finite-difference solutions of the Holstein equation@12,13#.
These methods require, however, a large amount of C
time, which makes it difficult to study the influence of var
ous parameters by making repeated simulations. An ana
cal solution of the problem would thus be desirable. In
recent communication@14#, we have outlined an approxi
mate analytical computation of the excited-state distribut
3333 © 1997 The American Physical Society
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3334 55N. N. BEZUGLOV et al.
averaged over the cell. In this paper, we derive a somew
related method that gives also information on thespatial
distribution of the excited-state atoms, and we derive ph
cally motivated correction factors that drastically increa
the accuracy of the computations. Comparisons with num
cal results show the accuracy to be usually better than 5

In particular, it is demonstrated that the method of
duced optical depth, which up to now has been employed
plane-parallel geometries only~see, for example,@15#! may
be extended with some corrections to describe nonlin
trapping decay problems for curvilinear geometries~cylindri-
cal and spherical!. We will also demonstrate that the radi
tion emerging from the vapor can decay faster than with
natural lifetime of the atoms.

This work is organized as follows: in Sec. II, we defin
the problem, specify the physical assumptions of the mo
and derive the mathematical description. In Secs. III and
we derive an approximate analytical solution for the excit
state density averaged over the whole cell, and over the
tially excited region, respectively. Section V derives corre
tion factors for these distributions that greatly enhance
accuracy of the method. Section VI discusses the phenom
of a fast~subnatural! decrease of photon flux emerging fro
the slab, and compares the computed results with data o
experiment performed on sodium vapors. Appendices
through E present details of the mathemical treatments u
in our calculations.

II. FORMULATION OF THE PROBLEM

We consider the following situation: a laser illuminates
part ~regionA, with boundarySA) of an atomic vapor cell;
see Fig. 1~a! @see also Fig. 1~c!, where the cell has the shap
of a large flat slab#. The aim of our computation is to find th
excited-state distributionn* (x,t); i.e., we want both spatia
and temporal information (x denotes the three-dimension
position vector! on the excited state density. For the comp
tations, we make the following assumptions:~i! only two
levels in the atomic structure are relevant for the trapp

FIG. 1. Sketch of the typical situation for the laser excitation
a gas medium~a!, of the geometry relevant for the determination
NA* (t) ~b!, of the slab~c!, and cylinder geometries~d! discussed in
the text. RegionA is directly excited by the laser pulse; parame
r gives the relative size of the laser beam.
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process~e.g. the ground state and first resonance state o
alkali-metal atom!; ~ii ! the walls of the vapor cell are com
pletely transparent; i.e., photons that reach the walls esc
from the cell, and are not reflected back into the vapor;~iii !
the flight time of the photons is much smaller than the na
ral lifetime of the excited atoms;~iv! particle diffusion is
negligible;~v! collisional quenching and branching~i.e., loss
of excitation when atoms decay to the ground state thro
some intermediate, untrapped transition! is neglected~this
assumption will be discussed in more detail in Sec. III!; ~vi!
the emission frequency of a spontaneously emitted photo
independent of the frequency of the previously absorb
photon @complete frequency redistribution~CFR!#, and the
direction is isotropic;~vii ! the geometry of the vapor cell ca
be approximated as ‘‘one dimensional’’~a plane-parallel
slab, an infinitely long cylinder, a sphere!, and the initial
excitation depends only on one spatial coordinater which
determines~a! the distance from the center plane of the lay
~b! the radial cylinder coordinate and~c! the distance from
the sphere center. This also implies that there is no ti
focusing of the laser beam, since this would give rise
two-dimensional~2D! effects.

These assumptions are also usually made for the com
tation of linear radiation trapping; they are often fulfilled in
laboratory situations~for a discussion, see, e.g.,@7#!. Further-
more, we assume that~viii ! the duration of the exciting lase
pulse is much shorter than the natural lifetime of the atom
~ix! the laser pulse is strong enough to cause appreci
saturation in regionA. For example, in sodium atoms, whic
is the most investigated case@13,16#, this requires intensities
larger than about 3 kW/cm2. On the other hand, the intensit
must be low enough that high-field effects such as Autl
Townes ~ac-Stark splitting! effects are negligible. For the
validity of the Holstein theory, the presence of Rabi sid
bands must be ignored. In other words, Rabi sidebands m
be overlapped within the laser line. Considering typic
pulsed laser bandwidths~approximately 0.01 nm!, this poses
an upper limit to the laser intensity, which must be smal
than'5 MW/cm2 @17#. In that range of intensities, multi
photon ionization is also negligible@18,19#. Due to the short
duration of the laser pulse~few nanoseconds! and the con-
sidered intensity range, the generation of nonthermal e
trons during the pump phase~i.e., while the laser pulse is on!
is low.

These conditions describe a vapor that is ‘‘softly’’ excite
by the laser; they are not valid for experiments with explo
ing targets, where movement of atoms plays an import
role; those experiments are beyond the purview of this pa
We are concentrating on a vapor in a sealed cell, where
short laser pulse leads only to an excitation of a bound s
~typically the lowest resonance state!. The LIBORS ~light
ionization based on resonance saturation! theory predicts that
even under these conditions, practically 10% ionization c
occur during the decay phase of initial gas medium exc
tion @20,21#.

In our conditions, both the rate equations and light-vap
interaction are treated within the frame of convention
Biberman-Holstein theory. We start out by defining ma
ematically the effective spectral absorption coefficie
k(n,n* ), which describes the difference between absorpt
and stimulated emission. It depends thus on the ground-s

f
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55 3335NONLINEAR RADIATION TRAPPING IN AN ATOMIC . . .
and excited-state densities,n1 andn* , respectively, which in
turn depend on spatial coordinatex and timet:

k~n,x!5k0unn1~x,t !F12
n* ~x,t !

n1~x,t !

g1
g* G , ~1!

whereg1 andg* are the statistical weights of the ground a
of the excited state, respectively,k0 is the absorption coeffi-
cient per unit atom in the center of the absorption line,n0,
and the line shapeun satisfiesun5n0

51.

The opacityx between two pointsx,x̃, separated by a
distancer5ux2 x̃u is given by the integral

x~n,x,x̃;n* !5E
x

x̃
k~n,xl !dl ~2!

over a straight linexl connectingx̃ with x.
The probabilityG that a photon emitted atx̃ is reabsorbed

at x depends onk according to@3#

G~x,x̃;n* !5
1

4pr2
1

E k~n,x̃!dn
E k~n,x!k~n,x̃!

3exp@2x~n,x,x̃;n* !#dn. ~3!

The excited-state density is decreased by natural de
with the radiation rate constantG and it is increased by re
absorption of photons that are emitted somewhere else in
vapor. It is thus described by the following Holstein equ
tion:

]n* ~x,t !

]t
52Gn* ~x,t !1GE G~x,x̃;n* !n* ~ x̃,t !d3x̃.

~4!

We see that the reabsorption probabilityG is the kernel of
the ~nonlinear! integro-differential equation. The nonlinea
behavior occurs due to the dependence of the absorption
efficient k on n* @Eq. ~1!#.

The initial condition is given by the assumption of com
plete saturation in zoneA at the end of the pulse (t50): the
excited atom densitynA* becomes a fraction of the atom tot
density,n5n*1n1:

nA*5nS*5n
g*

g11g*
. ~5!

Thus, according to Eq.~1!, the absorption by the gas mediu
vanishes, andk(n,nS* )50 in the region A. We assume tha
the regionA is always in the center of the vessel; its si
@radiusr A , see Fig. 1~a!# can be conveniently expressed
R units by introducing the parameterr5r A /R.

The behavior of the line shapeun in the wings of the line
determines the trapping in an optically dense medium.
cording to the quasistatic theory of the spectral line broad
ing, the decrease ofun in the wings is ruled by a power-law
function @5,15#

un;un2n0u2m. ~6!
ay

he
-

o-

-
n-

Formally, the exponential dependence of the Doppler pro
can be recovered by placingm5mD5` in Eq. ~6!.

III. TOTAL EXCITED-STATE DENSITY

A. Derivation of closed-form equations

In a recent paper@14#, we derived a method for the com
putation of the total numberN* (t) of excited atoms. We first
integrate Eq.~4! over the entire volumeV of the cell:

dN* ~ t !

dt
52GE

V
d3x̃n* ~ x̃,t !F12E

V
d3xG~x,x̃;n* !G ,

N*5E
V
n* ~x,t !d3x. ~7!

The expression in brackets in Eq.~7! represents the loca
escape factorq( x̃), i.e., the probability that a photon emitte
at the point x̃ escapes from the vapor cell without bein
reabsorbed@22,23#. This interpretation is valid for arbitrary
spatial distribution of the absorption coefficient@24#.

Thus, Eq.~7! can be rewritten as a rate equation:

dN*

dt
52GN*qef„t~N* !…, ~8!

whereqef is a spatially averaged value ofq(x), weighted by
the spatial distribution of excited-state atomsn* (x,t):

qef5

E
V
n* ~x,t !q~x!d3x

E
V
n* ~x,t !d3x

. ~9!

We next introduce the ‘‘optical depth’’t of the vessel,
which describes the current opacity of the whole vessel m
sured along thez axis ~for the slab! t5x(n0 ,xt ,x̃t ,n* ),
wherext5(0,0,0) andx̃t5(0,0,R) @see Fig. 1~c!#, or mea-
sured along the radial coordinater ~for a cylinder or sphere!.
The following relationship betweent and N* is of great
importance:

t~N* !5t~M !F12
N* ~ t !

NS*
G . ~10!

In Eq. ~10!, NS*5VnS* is the maximum possible numbe
of excited atoms, corresponding to the entire excitation
the gas volumeV, and t (M )5nk0R is the opacity without
stimulated emission~i.e., in the linear case!.

The transformation to ‘‘optical-depth’’ coordinates@using
Eq. ~10!# is exact@21# for a plane-parallel slab with an arb
trary spatial distributionn1* (x). It is also strictly valid, as
follows from Eqs.~1! and ~2!, for uniform n1* (x) in cylin-
drical and spherical geometries, and can be employed
proximately for arbitraryn* (x) in these geometries, as wi
be discussed below. Due to Eq.~10! the problem of evaluat-
ing the escape factorqef Eq. ~9! may be converted to the
case of a spatially homogeneous ground-state~absorbing!
atom distribution in a vessel of current opacityt.

The rate equation forN* can now be written as
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3336 55N. N. BEZUGLOV et al.
dN*

dt
52GN*qefFt~M !S 12

N*

NS*
D G . ~11!

In order to evaluate this equation, we need the effec
escape factorqef , which in turn depends on the spatial di
tribution of excited atoms~i.e., what we want to compute!.
We circumvent this problem byassuminga certain spatial
distribution n* in Eq. ~9!, namely the fundamental linea
mode distributionnf(x), which is the spatial distribution tha
occurs fort→` @5,7#. nf(x) can be expressed through th
following analytical approximate expression@5,15#:

nf~r !5S 12
r 2

R2D g

, ~12!

where the spectral parameterg5(m21)/2m is determined
by the wings of the line shape as given by Eq.~6!. For all
possible profiles with 0,g<0.5, the line has broad wings
For the two most important line shapes, i.e., for Lorentz a
Doppler profiles,gL50.25,gD50.5, respectively. At earlier
times, the actual excited-state distribution can differ from
fundamental-mode distribution. The error introduced by t
difference will be analyzed below.

With the assumption of a time-independent spatial dis
bution in Eq.~9!, Eq. ~11! becomes a one-dimensional no
linear equation for the determination ofN* . With the initial
condition that the volumeVA is completely saturated
@N* (t50)5NS*VA /V#, we get an implicit equation forN* ,
the excited-state density integrated over the whole cell:

tG5E
N* /NS*

VA /V du

u

1

qef@t~M !~12u!#
5I SN*NS

D2I SVA

V D ,
~13!

where

I ~p!5E
p

1du

u

1

qef@t~M !~12u!#
. ~14!

According to the derivation discussed in Appendix B, t
integral I (p) has closed-form approximations for both Lo
entz and Doppler profiles:

I ~L !~p!5
1.5

qef
~L !@t~M !~12p!/2.25#

3F 1

A12p
ln
11A12p

121A12p
22G , ~15!

I ~D !~p!5
2

qef
~D !@t~M !~12p!/2#

F2 ln~p!

12p
21G . ~16!

Thus, these equations provide an analytical solution
one important parameter of the vapor, the total numbe
excited-state atoms.

If also quenching or branching occur, then we would ha
to add a term@2(Gb1Q)N* # on the right-hand side of Eq
~8!, whereGb is the radiative decay rate of the untrapp
transitions emanating from the excited state, andQ is the
quenching rate for collisional quenching. This term modifi
e

d

e
s

i-

r
f

e

s

also Eq.~13! by the following replacement:qef is changed
by qef@t (M )(12u)#1(Gb1Q)/G.

This shows that a rather straightforward inclusion
branching and quenching is possible. However, for
analysis of the lowest resonance state of sodium ato
treated explicitly in the present work, these effects can
neglected. Branching cannot occur, since there are no in
mediate levels between the excited and the ground state
self-quenching, we can compute the typical rates as the p
uct of the density (101321014 cm23), the self-quenching
cross section (10214 cm2), and the velocity (104 cm/s).
Quenching effects occur thus on a time scale of 1024 s,
which is much larger than the observation time, typically le
than 1026 s. If a noble gas is present in the cell, then t
foreign-gas quenching is of the same order as the s
quenching: while the densities for the noble gas are m
higher, the quenching cross sections are much lower.
other experimental situations, however, quenching
branching might be relevant.

The situation becomes even more complicated if there
very strong hyperfine splitting~hfs! of the ground state, as
occurs in rubidium and cesium. In these atoms, the splitt
is so strong that the hf levels must be regarded as dist
levels that are all appreciably populated, so that the tra
tions from the excited state to hfs levels are all trapped
that case, we have to set up a system of equations simila
Eq. ~8!, but with the escape factor depending on the densi
in all states. To our knowledge, a closed-form solution of
type of Eq.~13! is not yet available for that kind of problem
Furthermore, new physical effects, such as optical pump
@25#, can occur in these configurations. Numerical solutio
of this problem have been given in@26#.

Nevertheless the two-level model works nicely in the ca
of alkali atoms such as sodium. If the linewidth of the lase
large, one can consider the resonance saturation of
3S1/2→3P1/2 ~or 3S1/2→3P3/2) transition to lead to an equa
population of all hf sublevels. During the decay phase,
large Doppler or Lorentz linewidth covers all hyperfine e
fects @27#.

In the remainder of the paper, we will confine our atte
tion to the canonical case of a true two-level atom witho
quenching or branching.

B. Computation of the escape factor

We now take a look at the escape factor for various s
tial distributions, and investigate the error introduced by
assumption of a time-invariant spatial distribution. As me
tioned above, the assumed distributionnf is close to the ac-
tual one at late times, but not necessarily at early times.
largest differences will occur ifVA is very small @in that
case, then* (x,0) approximates ad distribution at the center
of the cell!, or if VA5V @in that casen* (x,0) is uniform#. In
order to find the maximum error introduced by this diffe
ence, we now examine the escape factors@Eq. ~9!# for a
broad class of power-law distribution function
n* (x,t)5nm(r ):

nm~r !5S 12
r 2

R2Dm, 0<m,`. ~17!

For a power indexm50, n0(r ) describes a spatially uniform
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TABLE I. Escape factors for different geometries and line profiles.

Layer Cylinder Sphere

k51 k52 k53

Doppler profileQD d(m5`) 1
2

p

4
1

fundamental mode 0.91 1.58 2.14

m50.5 1
3p2

16
.1.85

8
3.2.67

m50
lnt

2
lnt 3

2lnt

Lorentz profileQL d(m5`) 2
3

2ApG~1.25!

3G~0.75!
.0.87 1

fundamental mode 0.81 1.12 1.34

m50.5
16A2
9p

.0.80
8

5A2
.1.13 16•8

21pA2
.1.37

m50
2A2
3

.0.94
8p

9

G~1.25!

G3~0.75!
.1.37

6A2
5

.1.69
a-

-

s-
,
hi

-

s

ts

e

in
. In
distribution. For largem values, it is possible to write a
series expansion of Eq.~17! for r;0: (12r 2/R2)m.
exp(2mr2/R2). Thus,m→` corresponds to a sharp localiz
tion in the cell center~the radiation constant 1/qef

(d) is known
in this case as Biberman’s effective lifetime@4,22#!:
n`(r )5d(r ). Whenm5g, Eq. ~17! describes obviously the
fundamental modenf(r ) @Eq. ~12!#.

Thus the functionsnm(r ) introduced by Eq.~17! cover all
space distributionsn* (r ,t) occurring while the decay pro
cess takes place.

In Appendix A we derive a general formula for the a
ymptotic behavior (t5k0nR→`) of the escape factor
which is valid for all the three geometries considered in t
work:

qef
~m!~t !5T~t!

Ap G~k/21g!

2G~1.51g!G~k/2!

3F G~11m22g!G~k/21m11!

G~11m2g!G~k/21m112g!G , ~18!

whereG(F) is the EulerG function with argumentF. The
parameterk entering Eq.~18! describes the type of geom
etry: k51 for a plane-parallel slab of total thickness 2R;
k52 for a cylinder with radiusR; k53 for a sphere with
radiusR. The functionT(t) in Eq. ~18! gives the transmis-
sion factor through a layer of opacityt @15,23#:

T~t!5E wnexp~2tun!dn, wn5
kn

*kndn
~19!

with the well-known properties@15#
s

T~t! .
t→1

1, T~t! .
t→`

c

t2g , T~tz! .
t→`

T~t!

z2g . ~20!

According to Eq.~18!, the same factorization propertie
as those given in the last equation of Eq.~20! are valid also
for the escape factorqef

(m)(tz). This fact will be used exten-
sively in the following. Note that the expression in bracke
in Eq. ~18! becomes equal to unity whenm→`. It implies
that the part of Eq.~18! not enclosed in brackets gives th
qef
(d) factor.
For Doppler and Lorentz spectral profiles, Eq.~18! can be

written as follows:

Doppler: qef
~m!~t !5

QD
~m!

tAp ln~t!
, T~D !~t !;

1

tAp ln~t!
,

~21!

Lorentz: qef
~m!~t !5

QL
~m!

Apt
, T~L !~t !;

1

Apt
. ~22!

The values ofQD
(m) andQL

(m) parameters are presented
Table I for the three geometries considered in this paper
the table, the escape factors of the ground~Holstein! mode
qef
(H).Qg

(H)T(t) are also reported @7#. Note that
G(11m22g)5G(122g)→` when m50 for Doppler
profile (g50.5). This divergence is the reason@28# for the
appearance of the function ln(t) in Table I.

Equation ~18! is not valid in the low-opacity region
t<5. An expression suitable for the evaluation ofqef

(m) is
derived in Appendix A~see also@28#!:
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qef
~m!~t !5

G~k/21m11!

G~k/2!
211mE

0

`

dnwntunE
tun

` dz

zm12

3I k/21m~z!Kk/2~z!, ~23!

where I l andKl are modified Bessel functions of the fir
and second kind@29#. In the case that the excited atoms a
concentrated in the center of the cell (m5`), Eq. ~23! im-
mediately reduces to

qef
~d!~t!5

212k/2

G~k/2!
E
0

`

dnwntunE
tun

`

dzzk/222Kk/2~z!.

~24!

Note that, for allm values,qef
(m)(t).1 for t;0. This is in

agreement with a general consideration: photons escape
gas medium freely for small opacities.

The comparison between differentQ(m) values~see Table
I! points out that for a Doppler profile, whent@1, the es-
cape factors strongly depend on the spatial distribution
n* : for a uniform distribution (m50), QD contains a factor
ln(t), which can become very large at large opacities.
other distributions, however, theQ(m) values are constants

IV. DETERMINATION OF NA* „T… IN THE VOLUME A

In this section, we derive a closed-form equation
nA* (t), the excited-state density in the directly excited reg
A. We consider only early times; we know that at late tim
the problem is linear and the spatial distribution is actua
described by the fundamental mode. We can thus make
following two simplifications:~i! within the volumeVA , the
densityn* remains practically uniform, so the total numb
NA* of the excited atoms inVA is nA*VA ; this assumption will
be fulfilled longer for a smaller ratioVA /V; ~ii ! the second-
ary excited atoms in the regionB are localized mainly close
to the surfaceSA @see Fig. 1~b!#; excitation of atoms in the
regionB is due to the photons emerging from regionA. This
assumption is actually not fulfilled for a low-opacity vapo
However, we will see that the results of our derivation ag
well with the numerical calculations already for opaciti
t52 ~see Fig. 3!, and radiation trapping effects in vapo
with even lower opacities are small anyway.

In the early stage of the decay, the optical thickness
region A remains small and the spectrum of the radiat
emerging from regionA is not affected by self-reversal. I
this case, the dominant source of excitation in regionB has a
space behavior ruled by a power-law, withdT(j)/dj de-
creasing as (jnk0)

2122g, wherej denotes a coordinate i
the regionB along the direction normal toSA . For large
opacities, this distribution corresponds to ad distribution
near the surfaceSA of regionA @see Fig. 1~b!#.

Since by assumptionnA* (x,t) is independent ofx, it is
sufficient to consider the casex50. Equation~4! can then be
written as~for the sake of simplicity, we henceforth omit th
argumentn* from the kernelG)

dnA*

dt
U
r50

52nA* ~r50,t !GF12E
VA

d3x̃G~r50,x̃!G
the

f

r

r
n
,
y
he

e

f

1GE
VB

G~0,x̃!n* ~ x̃,t !d3x̃. ~25!

The first term in brackets on the right-hand side is t
escape factor from regionA, similar to that introduced in Eq
~7! ~i.e., the probability of escaping from the center of regi
A without being reabsorbed!. Since we have already made a
assumption about the spatial distribution of excited-state
oms, the evaluation is straightforward:

12E
VA

G~r50,x̃!dx̃5qef
m5`

„tA* ~ t !…, ~26!

with

tA* ~ t !5tA
~M !S 12

nA*

nS*
D , ~27!

where tA
(M )5k0nrA is the maximum linear opacity for the

directly excited regionA @compare with Eq.~10!#.
For the evaluation of the second term in Eq.~25!, we use

the fact thatnB* is concentrated near the boundary betwe
region A and regionB. Thus, integration overVB can be
restricted to a small volumeVD close toSA :

E
VB

d3x̃G~0,x̃!n* ~ x̃,t ! 5
VD→0

E
VB

n* ~ x̃,t !d3x̃

E
VD

d3x̃G~0,x̃!

E
VD

d3x̃

.

~28!

The L’Hopital rule can be used to determine the ra
appearing in Eq.~28!:

E
VB

d3x̃G~0,x̃!n*5NB* ~ t !
2~d/dr !qef

~d!

~d/dr !V~r !
U
r5r A

, ~29!

where we have introduced the escape factorqef
(d) :

qef
~d!512E

Vr

d3x̃G~r50,x̃!, ~30!

which corresponds to the Biberman escape factor for a
ume of radiusr . According to the notations introduced ju
after Eqs.~7! and~17!, qef

(d) corresponds to the escape fact
with m5`.

Equation~25! can then be written in the form

dNA* ~ t !

dt
52Gqef

~d!S tA
~M !S 12

NA*

nS*VA
D DNA* ~ t !1G~N*2NA* !

3qexS tA
~M !S 12

NA*

nS*VA
D D , ~31!

where

qex~x!52
x

k

dqef
~d!~x!

dx
, ~32!
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and we have introduced the total number of excited atom
regionA, NA*5VAnA* .

The right-hand side of Eq.~31! consists of two terms. The
first one is the rate with whichNA decreases because of th
photons leaving regionA. The second term corresponds
photons that are emitted in regionB ~from secondary-excited
atoms! and are reabsorbed in regionA. Since the explicit
dependence ofN* (t) on time t is given by Eqs.~11! and
~13!, it is possible to derive a one-dimensional closed eq
tion for the determination ofNA* (t) with the initial condition
NA* (t50)5nS*VA . In practice, it is more convenient to solv
Eq. ~31! by exploiting the time dependence ofN* on t:

dNA* ~ t !

dt
5
dNA*

dN*
dN*

dt
52GN*qef

~m!S t~M !S 12
N*

NS*
D DdNA*

dN*
,

~33!

This allows us to treatNA* as a function ofN* in Eq. ~31!.
Before discussing the results of our analysis, we pres

here some features of the rate constantqex that will be useful
in the following:

qex~x! ;
x→0

x, qex~x! ;
x→`

2gQ~d!T~x!/k. ~34!

In addition, according to the definition given in Eq.~32!, the
following expression forqex can be derived from Eq.~24!:

qex~t!5
212k/2

kG~k/2!
E
0

`

dnwntunE
tun

`

dzzk/221Kk/221~z!.

~35!

The behavior ofqex as a function ofx stated in Eq.~34!
for small x follows directly from Eq.~35!, whereas the as
ymptotic behavior forx→` is determined by Eqs.~18!–
~22!.

Figure 2 shows the excited-state density in a slab w
t510. Numerical solutions are shown as solid curves,
the analytical solutionsN* , NA* of Eqs.~11! and ~31! ~with
qef5qef

(m50.5)) are represented with dotted lines. We see t
the agreement forN* is quite good, as anticipated from Re
@14#. However, the solutions forNA* , NB* show considerable
deviations, so that additional analysis is required to impro
our solutions.

V. CORRECTION FACTORS

In the previous sections, we have derived analytical eq
tions, Eqs.~11! and~31!, which explain the main features o
the nonlinear decay process. In order to derive this desc
tion, we have introduced three basic assumptions:~i! the spa-
tial distribution of excited atoms in Eq.~9! is always identi-
cal to the lowest-order mode distribution;~ii ! the connection
between the current opacityt(t) and N* (t) @Eq. ~10!#,
which is valid strictly for a plane-parallel slab, can be us
for curvilinear geometries;~iii ! all atoms in regionB are
concentrated near the boundary between regionsA andB. In
this section, we will analyze these three assumptions
compute the maximum error caused by them. More imp
tantly, we will derive physically motivated correction fac
tors, which greatly increase the accuracy of the descripti
in

-

nt

h
d

t

e

a-

p-

d

d
r-

.

The main idea for the correction factors is the analysis
the excited-state distribution for two crucial limiting case
~i! at the beginning of the decay, when the equations hav
nonlinear behavior because of the saturation of the gas
dium by the laser pulse;~ii ! in the final stage of the deca
~linear part!, which is ruled only by the fundamental mod
space distributionnf* , with an effective lifetime 1/(Gqef

(H)).
These limiting cases can be investigated analytically by v
ous methods; the correct behavior of the solutions of E
~11! and ~31! is then enforced by modifying the rate con
stants in these equations. If we can get a correct descrip
at early and late times, we can anticipate that this descrip
will also work well at intermediate times, as is confirmed
comparisons with numerical simulations.

We can see from Table I that for a Doppler line shape
escape factor depends strongly on the excited-state dist
tion, while this dependence is much weaker for the Lore
profile. The Doppler shape thus represents the most diffi
situation and will be at the center of our attention in th
section; the results are also valid for the Lorentz profile.

A. Corrections to the one-mode approach

The first and most important assumption is that t
excited-state distribution does not vary with time; we c
this the one-mode approach~although, strictly speaking
there are no modes in a nonlinear problem!. At early times,
this assumption is not true. The physical processes occur
at early times can best be explained for the slab geome
here we can replace the spatial coordinatez by an optical
depth coordinatet:

t~z,t !5k0E
0

z

dz̃ Fn1~ z̃,t !2
g1
g*

n* ~ z̃,t !G , ~36!

which gives the opacityt(z,t) of the slab between the coor
dinates 0 andz at the instantt. This coordinate transforma
tion allows one to treat problems with an inhomogeneo
absorption coefficient in exactly the same way as the w
known problems with homogeneous absorption coefficien

In the t space, the equation forN* (t) has the form@21#

dN*

dt
52GN* ~ t !

1

E
2t~ t !

t~ t !
dt̃n* ~ t̃,t !

E
2t~ t !

t~ t !
dt̃n* ~ t̃,t !q~ t̃ !,

~37!

whereq(t) is exactly the local escape factor for a layer
current total optical opacity 2t(t). Due to Eq.~36!, and to
the fact thatn5n11n* is a constant along the space coo
dinate, we immediately obtain the relationship of Eq.~10!,
which connectst(t) with N* (t). This reduces the problem
of evaluating the rate constantqef in Eq. ~11! to a homoge-
neous absorption medium situation.

Let us examine the case where the laser excites the w
vapor cell,VA5V (r51). Thus, at the first instant, the ex
citation is uniform, andt space andz space are equivalent
As time goes on, the decay will be strongest near the
walls, so that there we will have a larger effective absorpt
coefficient than in the middle of the cell. This means that
~in geometrical space! small region where we have a large
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TABLE II. Values of thec constant for different geometries.

Layer Cylinder Sphere
k51 k52 k53

Doppler profilecD r50 1.27S3p

8
.1.18D 1.43~ 43.1.33! 1.57S 15p2

32
.1.47D

r51 0.81S 3p2

32
.0.92D 0.80~ 89.0.91! 0.77~0.87!

Lorentz profilecL r50 1.11 1.20 1.27
r51 0.97 0.96 0.95
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percentage of ground-state atoms transforms into a~in t
space! larger region~in the caset (M )@1).

This implies in turn that, in thet space, the distribution o
excited-state atoms decays very quickly to the fundamen
mode distribution. Furthermore, the error at early times
very small due to the following fact: The opacityt(t50),
which is zero at the beginning of the process, remains sm
during the evolution of thenr51* distribution into the funda-
mental distribution. However, the escape factorqef

(m) is not
sensitive to the actualm values whent(t) is small. We have
seen in the previous sections that the difference inQD be-
tweenm50 andm50.5 can become very large. Howeve
the above discussion demonstrates that the nonlinearit
the problem actuallydecreasesthis difference.

If the laser excites only part of the vapor cell, then t
initial distribution in t space is ad distribution: regionA
contributes nothing to the opacity, so that all points in t
region are att50. As time increases, the fluorescence ph
tons are emitted, and most of them are absorbed near
boundarySA , leading to a bleaching effect also in th
boundary region:tB(t),tB(t50). Moreover, there is an
other change in thet coordinate: points in regionA ~but with
zÞ0) that were previously att50 are now at some poin
t different from zero, i.e., closer to the cell walls. The
effects again help to reach the fundamental-mode distr
tion in a relatively short time.

Finally, if the laser excites only a very small region in th
center of the slab, we have no nonlinearity at all;t space and
geometrical space are equivalent. The problem is the sam
a linear trapping problem with ad initial distribution. Being
the most difficult situation, it also provides the limits for th
accuracy of the one-mode approach.

In Appendix C, we show how the correct behavior
early and late times can be recovered by introducing a ti
variant opacity into the solution Eqs.~11! and ~31!, i.e. by
substituting

t~M !→t~M !S 11Dr

N* ~ t !

N* ~ t50! D , ~38!

where

Dr5~12rk!~cr5021! ~39!

andcr50 is given in Table II in the line ‘‘Doppler profile’’
l-
s

ll

of

s
-
he

u-

as

t
e-

~the presence of the numbers in brackets will be explaine
Appendix C!.

The analysis of Appendix C allows one to estimate t
final error in the evaluation of the total number of excit
atoms N* (t) by means of Eqs.~11!, ~38!, and ~39! as
'5%. This is demonstrated by theN* -curves of Figs. 2–4,
which show N* , NA* , and NB* for various opacities
(t52,10) and intial excitations (r50.25,0.5) for Doppler
and Lorentz profiles. We see that we get good agreem
~error less than 10%! for all cases. We see from the figure
that the agreement is better for Lorentz than for Doppler l
shapes, in accordance with the results of the qualitative

FIG. 2. Slab witht (M )510, r50.25: normalized decay curve
for the total number of excited atoms in all the considered volu
(N* ), in regionA (NA* ) and in regionB (NB* ), for Lorentz~a! and
Doppler ~b! profiles. The solid lines represent the result of the n
merical simulations, according to@13#; the dotted lines are the so
lutions with the analytical equations of Secs. III and IV; the dash
lines are the analytical solutions including the correction factors
Sec. V.
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55 3341NONLINEAR RADIATION TRAPPING IN AN ATOMIC . . .
cussion given above. It is thus also clear that the error fo
Voigt line will be somewhere between the error for a Do
pler line and the error for a Lorentz line; in other words, t
error for the Doppler line is the upper limit for all practical
occurring line shapes. Further examples of the results fo
for the entirely excited layer (r51) are presented in ou
previous work@14# ~note that the correction factor for th
entirely excited slab vanishes!.

B. Corrections on the geometry

The computations in the plane-parallel slab are simplifi
by the fact that we can introduce the optical-density coo
natet in Eq. ~36!. In the first moment, the whole regionA
corresponds tot50; i.e., the escape of the photons is ind
pendent of the geometrical positionz within regionA. The
local escape factorqL(r ) is determined essentially by th
linear opacityt5k0n(R2r A) of the regionB @see the sketch
shown in Fig. 1~c!#. Assuming Eq~10! to be valid for all
types of cells under investigation we thus simulated forma
the situations occurring in the linear geometry. For curvil
ear geometries~cylindrical, spherical!, the above simplifica-
tion, however, is not possible anymore. This fact can be
derstood more easily considering a sphere. A photon em

FIG. 3. Partially excited slab with various opacitiest (M )52 or
10 and various initial excitations (r50.25 or 0.5): normalized de
cay curves for the total number of excited atoms in all the con
ered volume (N* ), in regionA (NA* ) and in regionB (NB* ) for
Doppler profile. The solid and dashed lines represent the resul
the numerical and analytical@Eqs. ~40!–~43!# simulations, respec-
tively.
a
-

d

d
i-

-

y
-

-
ed

in the center of the sphere has to cover a geometrical p
length r A through regionA ~which is transparent!, and
R2r A through regionB, since the direction of propagation i
normal on the surface of the sphere. This is the shor
possible length for escape. However, a photon that is emi
at some other point in regionA can have a direction that ha
some angle with respect to the normal on the surface, so
the path length through regionB is larger. Thus, the opacity
and hence the escape factor, depends on the position o
emitting atom. This fact has to be included in the simu
tions. As shown in Appendix D, the geometry correction c
be written by modifying the opacity — exactly as for th
single-mode correction. More precisely, we make the sub
tution t→t(11DG), whereDG5DC50.19 for a cylinder
andDG5DS50.33 for a sphere in the caser;1. This de-
scribes the change in the escape factor~as compared to the
usual escape factor in a cylinder or a sphere! that is due to a
hollow-cylinder or hollow-sphere geometry. This geome
is valid only at the beginning of the decay process; at la
times, we have the normal geometry. The correction m
thus be implemented at the beginning, and vanishes at
times; this problem is similar to the single-mode correcti
described in the previous subsection. We can thus use
~38! for taking into account the geometry correction facto

There is, however, one important difference: for t
single-mode correction, the correction was large when
initially excited region was very small,r50, and zero for
r51. For the geometry modifications, the correction is ze
for r50 and large forr51, so that it is reasonable to ap
proximate it asDG(r)5rkDG @compare with Eq.~39!#. Thus

-

of

FIG. 4. Same as Fig. 3, but with Lorentzian line shape.
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the total correction D(k52,3), i.e., the sum
D5Dr1DG(r), is nearly independent ofr. We will take
D5@Dr501DG(r51)#/2, that, as is seen from Table I an
Eqs.~D9! and ~D10!, corresponds to a 10% accuracy in t
evaluation oft for k52,3. Table III shows the values ofD
for the three geometries under investigation.

Let us summarize the results presented in Secs. V A
V B by writing the relevant rate equations with all the co
rections included:

dN*

dt
52GN*qef

~m50.5!
„t~ t !…, ~40!

t~ t !5t~M !S 12
N* ~ t !

nS*V
D S 11D

N* ~ t !

nS*VA
D , ~41!

dNA* ~ t !

dt
52Gqef

~m50.5!
„tA~ t !…NA* ~ t !1G~N*2NA* !

3qex„tA
~ex!~ t !l…l21, ~42!

tA~ t !5tA
~M !S 12

NA* ~ t !

nS*VA
D S 11DA

NA* ~ t !

nS*VA
D . ~43!

The appearance of the factorl in Eq. ~42! will be discussed
in the next section.

The geometry correction must also be carried out for
gion A. The prime excitation of regionA corresponds for-
mally to the caser;1. We decided, nevertheless, to u
DA5D in Eq. ~43! ~see Table III! in order to avoid discrep-
ancies between Eqs.~40! and ~42! for r;1 @for the same
reason, in Eq.~42! the escape factorqef

(m50.5) is chosen in-
stead ofqef

(d) entering Eq.~31!#. However, the best choice fo
DA
(ex) is DG5DS,C as is determined in Appendx D by Eq

~D9! and ~D10!.
The effectiveness of the corrections is demonstrated

Fig. 5, which shows the excited-state density in a cylin
with and without the correction factor: the accuracy inclu
ing theD factor is better than 10%, in agreement with t
above presented analysis.

C. Corrections on the atom distribution nB*

The third assumption in the derivation of Eq.~31! was
that the excited-state atoms in regionB are concentrated nea
the boundaryS to regionA. This assumption is valid at th
beginning of the decay, more precisely, during the time
terval 0<t<Tinc , while the total excitation in regionB is
growing. However, it is not valid at late times, where t
distribution has the shape of the lowest-order mode.

TABLE III. Correction factorsD for different geometries.

Layer Cylinder Sphere
k51 k52 k53

D 0.27 (12r) 0.30 0.45
DA 0 0.30 0.45
DA
(ex) 0 0.19 0.33
d

-

in
r
-

-

The basic idea of the correction factor is the following:
the opacity of regionA is small~i.e., at the beginning of the
decay!, the probability that a secondary photon~emitted in
regionB) is absorbed in regionA increases approximatel
linearly with the opacitytA @see Eq.~34!#. If the opacity of
regionA is large~i.e., at late times!, a further increase in the
opacity hardly changes the reabsorption probability. If
thus use a correction factorl so that

qex„tA~ t !…→qex„ltA~ t !…l21, ~44!

it does not affect theNA* curves at the beginning of the deca
ltA(t),1 @see Eq.~34!#, when no correction is needed. O
the contrary, thel factor influences strongly the value o
qex for largetA(t). A proper choice ofl thus allows one to
account for the space diffusion effects for excited ato
coming from radiation trapping processes in regionB.

The derivation for the factorl is given in Appendix E.
For the three geometries under consideration, we obtain

lk51
2 5

p

4

12r2/2

2r

12r„128/~3p!…

12r2~12p/4!
Lk51~tA

~M !!,

~45!

lk52
2 5

4

3p

12r2/2

3r2
11r

12r2/3
Lk52~tA

~M !!, ~46!

FIG. 5. Cylinder with t (M )510, r50.7: normalized decay
curves for the total number of excited atoms in all the conside
volume (N* ), in regionA (NA* ) and in regionB (NB* ), for Lorentz
~a! and Doppler~b! profiles. The solid lines represent the result
the numerical simulations, according to@12#; the dotted and dashe
lines are the solutions without and with correction factors, resp
tively .
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lk53
2 5

3

8

12r2/2

5r3
117r/3

120.4r2
Lk53~tA

~M !!. ~47!

The multiplierL is determined by Eq.~E2!. It reflects the
l-factor dependence on the opacity of regionA. TheL val-
ues as a function of the opacity are presented in Fig. 9.

Figures 2–6 demonstrate that our analytical approxim
tions @Eqs. ~40!–~47!# provide high accuracy in the evalua
tion of NA* andNB* over a large range of variations of bo
the opacity and laser beam radiusr A5rR. The accuracy is
higher for the slab case~see Figs. 2–4!, where we get an
accuracy better than 5% for both large and small opacit
over the whole range ofr values. The error for the cylinde
is only slightly worse, but always smaller than 10%~see
Figs. 5 and 6!. The reason for this is that the geometry co
rection introduced in Sec. V B is of course not perfect,
that we have an additional source of error~the slab does no
need this geometry correction at all!. The distribution of
excited-state atoms in regionB is also accounted for~as far
as the reabsorption rate in regionA is concerned!. The fact
that the accuracy forNB* is worst of all three considere
variables (N* , NA* , NB* ) is mainly due to the fact tha
NB* is much smaller thanN* at the beginning of the decay
and is computed as the differenceN*2NA* . Even a com-
paratively small error inN* ,NA* can thus produce a consid
erable error inNB* .

VI. SUBNATURAL FLUORESCENCE DECAY

Basically, there are two ways to observe the decay p
nomena in an atomic vapor. One possibility is to send

FIG. 6. Entirely excited cylinder with opacityt (M )510: normal-
ized decay curves of the total number of excited atoms~a!; normal-
ized decay curves of the emerging fluorescenceJ ~b!. The solid and
dashed lines represent the results of the numerical@12# and analyti-
cal @Eqs. ~49! and ~50!# simulations. The dotted line represent
decay with the natural lifetime.
-

s,

-
o

e-
a

probe radiation~e.g., radiation tuned to a higher-order res
nance transition! into the cell during the decay phase, an
observe the absorption of this beam. This provides a m
surement for the ground-state density, and allows a di
determination of the parameters that we discussed in the
vious subsections. By using an appropriate experimental
sign, it can even be used to determine the spatial distribu
of ground- state~or excited-state! atoms@31#. This requires,
however, additional experimental efforts. The other possi
ity is to observe just the fluorescence radiationJ emerging
from the vapor cell. There is, of course, a well-defined re
tion between the excited-state distribution integrated over
whole cell and the emergent radiation: if a photon esca
from the cell, the integrated excited-state density must
crease by one emitting atom. Mathematically, we can form
late this as

J}2
dN*

dt
. ~48!

While this relation is well understood and extensive
used in linear radiation trapping, the nonlinearity gives r
to some new interesting phenomena that are not clear at
glance, but that can be described by our analytical formu
tion. It is a common opinion that the radiation trapping lea
to an increase of all time scales involved in the decay p
cess, essentially the effective lifetime of the fundamen
mode. The nonlinear effects arising from medium bleach
appear to be out of the frame of this description: the em
gent radiation can decay with a time constant that isfaster
than the natural lifetime.

This phenomenon, first predicted by numerical simu
tions in a slab geometry@13#, can be explained qualitatively
by the role of ‘‘optical shutter’’ played by the bleached v
por. The subnatural decay occurs because the photon
emerging from the cell decreases not only due to the sma
number of excited atoms, but also due to the reabsorpt
which increases with time. For the case of a completely
cited cell (r51), the medium opacityt at the beginning of
the process (t50) is zero. Thus, the photons can esca
freely from the cell. During the deexcitation process ofn* ,
radiation absorption takes place, and photons are trappe
the medium.

As an example, Fig. 6 shows a typical decay curves~nu-
merical simulation, solid curves! of the emergent radiation
during excitation of the 3S23P transition of sodium vapors
~natural lifetimeG21516.7 ns! for a cylinder geometry, in
the case of entirely excited gas medium (r51). Superim-
posed on the numerical data are theoretical curves obta
for optical opacityt (M )510 for both Doppler and Lorentz
profiles. The decay of the total excitationN* shows a behav-
ior that at the beginning decays with the natural lifetim
~also shown in Fig. 6 with a dotted line!, and later becomes
slower. However, the fluorescence intensityJ}2dN* /dt
exhibits a very fast~subnatural! decay behavior, within a
typical time scale well below the natural lifetime, as e
plained above.

We can describe this effect by explicit analytical formul
@Eqs.~13! and ~14!, with the corrections of Sec. V#. In Ap-
pendix B it is shown that~for r51)
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tG5I ~D !~p!5
2/~11D!

qef,D
~m50.5!@~t~M !/2!~11D!~12p!#

3F2
ln~p!

12p
1

D

2
~12p!G , ~49!

tG5I ~L !~p!5
1.5/~A11D!

qef,L
~m50.5!@~t~M !/2.25!~11D!~12p!#

1

A12p

3E
p

1du

u
A~12u!~11Du!, ~50!

wherep5N* (t)/N* (t50).
The evaluation of the slope of theJ curves provides the

local decay rate constantGef for the fluorescence emission

Gef52
1

J

dJ

dt
. ~51!

According to Eq.~40!,

Gef52
dlnN*

dt
2
dlnqef

dt
5Gqef„t~ t !…2

d

dt
lnqef„t~ t !….

~52!

For t;0, and opacityt;0, the first term of Eq.~52! gives
the natural radiation constantG, but the second term, bein
positive (qef decreases for increasingt), tends to increase
theGef value.

Experimental confirmation of the subnatural decay h
been provided by an experiment involving the 3S→3P tran-
sition in sodium@16#. Measurements were done in a Pyre
glass cell shaped as a flat cylinder of heightL52 cm, with
a diameter d55 cm. The sodium density wasN5
1.231012 cm23. This experimental geometry correspon
closely to a slab ~see @7,28#! with a total thickness
L52R52 cm. For a Doppler profile this corresponds to
opacity 2t (M )511.

The whole vessel containing the sodium atoms was
cited by a pulsed dye laser tuned to the 3S1/2→3P1/2 transi-
tion at 589.6 nm. Pulse duration was 5 ns full width at h
maximum, pulse energy 3 mJ, and the spectral linewidth
about 0.015 nm. For the conditions of the experiment,
line profile was determined only by the Doppler broadeni

The resonance fluorescence light was collected throug
flat optical window by an optical fiber and detected by a f
silicon photodiode~rise time,0.3 ns!, connected to a fas
digital oscilloscope~HP54520A, bandwidth 500 MHz!. The
fluorescence signal was attenuated by means of neutral
sity filters in order to prevent detector saturation and ens
its linear response.

The inset of Fig. 7 shows the fluorescence signal~dots! as
a function of time for the first 50 ns after the laser shot. T
dashed line corresponds to the natural decay curve of
excited sodium level (G21516.7 ns!. As can be clearly seen
in the figure, in the first stage of the process (t<10 ns) the
fluorescence signal displays a decay much faster than
natural one, as predicted by the theory.

Figure 7 shows the fluorescence data recorded in the
decay interval. The solid curves@analytical results obtained
s
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f
s
e
.
a
t

en-
re

e
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tal

using Eq. ~49!, D50)# show the total photon flux
J52dN* /dt emerging from the gas medium. Some d
crepancies between the experimental data and the theore
results occur, due to the actual acceptance angle of the
cal fiber ('60°), which is lower than the 180° angle a
sumed in the analytical solution. Numerical simulations ta
ing into account the actual detection geometry of the se
have shown an even better agreement with the experime
results, as expected@16#.

VII. SUMMARY AND CONCLUSIONS

We have derived an analytical method for the compu
tion of the decay of an atomic vapor excited by a strong sh
laser pulse. The strong excitation leads to a nonlinearity
the decay process. We derived explicit equations for
excited-state density averaged over the whole cell, and
excited-state density in the initially excited region. The co
responding radiation rate constants~escape factors! were pre-
sented in the form of universal analytical expressions, allo
ing rapid evaluation for arbitrary line profiles. We firs
derived a very simple approximation that describes the b
features of the process. The accuracy of the method was
increased by introducing correction factors. These correc
factors are not some arbitrary numerical fitting factors, b
rely on a physically motivated origin, and thus provide
insight into the mechanisms that affect the excited-state d
sity. The equations are valid for all practically important lin
shapes~Doppler, Lorentz, and Voigt!. The accuracy of our
analytical formulations was shown to be better than 10%~for
Doppler line shapes! by comparing them to numerical solu
tions; for Lorentz and Voigt line shapes, the accuracy is e
better.

The behavior of the excited-state density is affected v
strongly by the nonlinearities. The excited-state density
creases much faster than one would expect on the bas
the usual~linear! trapping theory. Most important, the radia
tion emergent from a cell can decay faster than with
natural lifetime. This fact was confirmed by analytical com

FIG. 7. Normalized decay of the emerging fluorescence: exp
mental data from Ref.@16# ~open circles!, analytical results@Eqs.
~48! and~49!, with D50# obtained for an entirely excited slab wit
r51, decay with the natural lifetimeG21516.7 ns~dotted line!.
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putations, numerical simulations, and experiments.
The results and methods presented in this work can

used for the interpretation of experiments where a laser p
excites a vapor, as, in particular, the investigation of pho
resonant plasmas~see@21#!. Important parameters of thes
plasmas, such as the ion density distribution, electron en
distribution function, etc., are strongly related to the excite
state distribution, which we computed in this paper. Ther
also the possibility to solve, within the frame of the pr
sented method, the inverse problem, i.e., to obtain the ra
tive and collisional effective rate constants using the integ
characteristics of the excited medium. The methods de
oped in the present work for transferring the results obtai
for a plane-parallel slab to a curvilinear geometry can
useful to solve the ionization and radiation trapping pheno
ena occurring in excited mediums with strongly spa
inhomogeneous spectral characteristics, as, for instanc
the spherical geometries typical of aerosol plasmas~see, for
example, Ref.@32#!.
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APPENDIX A

In the derivation of Eqs.~18! and~23!, we have to analyze
first the local escape factorq(x), which can be suitably ex
pressed as

q~x!512E E
2`

` E d3x̃G~x2 x̃!qR
~ch!~ x̃!, ~A1!

where d3x indicates the volume integration eleme
dx1dydz in the (x1 ,y,z) space-coordinate system. The cha
acteristic functionqR

(ch)( x̃) restricts the integration in Eq
~A1! over the volumeV under investigation. For uniform
spatial distribution of ground-state atoms, the ker
G(x,x̃) @see Eq. ~4!# depends only on the differenc
(x2 x̃), so that the integral operator in Eq.~A1! is of the
convolution type. A convolution operator in the space d
main becomes a multiplication operator after Fourier tra
formation of Eq.~A1!:

q̂~p!5@12Ĝ~p!#q̂R
~ch!~p!, ~A2!

Ĝ~p!5E d3xexp~ ipW •xW !G~x!5E
2`

` wnkn

upu
arctanS upu

kn
Ddn,

~A3!

where q̂(p),Ĝ(p),q̂R
(ch)(p) are the Fourier transforms, i

the space of thep5(px ,py ,pz) coordinate, for the corre
sponding space functions.

The function q̂R
(ch)(p) is well known @29# to contain a

Bessel functionJk/2 for the geometries here considered:

q̂R
~ch!~p!5~2pR!k/2Jk/2~ upuR!upu2k/2Dk~p!. ~A4!
e
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The factor Dk(p) depends on the geometry, being~i!
Dk53(p)51 ~sphere!; ~ii ! Dk52(p)52pd(pz) ~cylinder!;
~iii ! Dk51(p)5(2p)2d(px)d(py) ~layer!.

The inverse Fourier transform forq̂(p) provides a suit-
able representation for the local escape factor:

q~r !5E
0

`

dupu
Jk/2~ upuR!

R2k/2

Jk/221~ upur !

r k/221 @12Ĝ~ upu!#,

~A5!

which is factorized on the variablesR,r . The coordinater
introduced in Eq.~A5! is ~i! the distance from the spher
center, for k53; ~ii ! the radial cylinder coordinate, fo
k52; ~iii ! r5uzu, that is the distance from the center pla
of the layer, fork51.

The rate constantsqef
(m) introduced in Eq.~9! are obtained

by averagingq(r ) over r space with a weight function
nm(r ) @according to Eq.~9!#:

qef
~m!5

E
0

R

drr k21q~r !nm~r !

E
0

R

drr k21nm~r !

. ~A6!

Using the identity@29#

E
0

1

drr k/2Jk/221~pr !~12r 2!m52mG~11m!
Jk/21m~p!

p11m ,

~A7!

the following expression forqef
(m) is obtained:

qef
~m!5

G~k/21m11!

G~k/2!
211mE

0

`

dpJk/2~p!
Jk/21m~p!

p11m

3@12Ĝ~p/R!#. ~A8!

The asymptotic expression fort5k0nR→` given in Eq.
~18! can then be obtained from Eq.~A8!, if the following
asymptotic form@5,15,28# is used:

12Ĝ~p/R! .
k0nR@1

pg

sin~pg!G~212g!
p2gT~k0nR!,

~A9!

along with the tabulated values for the integral involving tw
Bessel functions@29#.

The integral expression~A8! turns out to be identical to
Eq. ~23! after insertion of the expression given in Eq.~A3!
and some manipulations based on arctan-Bessel funct
@29#.

APPENDIX B

We shall evaluate here the integral

I ~p!5E
p

1du

u

1

qef„t
~M !~12u!~11Du!…

, ~B1!

that is the modification of the integral expressed in Eq.~14!
according to the correction given in Eq.~41!.
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The most straightforward way would be to use the h
opacity factorization introduced in Eq.~20! in order to write
a factorization for the integral of Eq.~B1!:

I ~p! 5
t~M !→`

Ĩ ~p!

qe f~t~M !!
, Ĩ ~p!5E

p

1du

u
~12u!2g~11Du!2g.

~B2!

However, the above approximation is not valid f
p;1: the actual behavior of the functionI (p) for p;1,

I ~p! .
p→1

~12p!, ~B3!

differs strongly from theĨ (p) behavior:

Ĩ ~p! .
p→1

~12p!2g11

2g11
~11D!2g. ~B4!

We thus have to find a different factorization of Eq.~B2!
that also satisfies the behavior of Eq.~B3!. Such a transfor-
mation is given by

I ~p!.
1

qef„t
~M !~12p!~11D!~112g!21/2g

…

Ĩ ~p!,

~B5!

Ĩ ~p!5
2g11

~11D!2g~12p!2gE
p

1du

u
~12u!2g~11Du!2g.

~B6!

It is straightforward to prove that Eqs.~B5! and ~B6!
show the factorization of Eq.~B2! for t (M )(12p)@1 be-
cause of Eq. ~20!, and lead to Eq.~B3! because all
qef
(m)(t);1 for t;0.
Equations~16! and ~49! presented in the text can be d

rived by explicit integration in Eq.~B6! for g50.5 ~Doppler
profile!; Eq. ~15! follows from Eq. ~B6! for g50.25,D50
~Lorentz profile!. Also in this latter case~Lorentz profile,
g50.25) butD.0, in fact, the integral in Eq.~B6! @see Eq.
~50!# can be expressed as a complicated combination o
ementary functions@29#. Equations~15!, ~16!, ~49!, and~50!
turn out to be sufficiently accurate~within a few percent! for
all t (M ),p values and they can be employed for evaluat
the integralI (p) within the precision of our approach.

APPENDIX C

As mentioned in Sec. V, we have to analyze two limiti
linear problems~initial distribution uniform, r51, and d
distribution,r50) in order to find the correction factors fo
the one-mode approach. The geometrical quantization t
nique developed in@30# gives the following expressions fo
N* (t) in the Doppler line case:

Nr50,1* ~ t !5 f 0,1~ t !expS 2
t

tef
~H !D , ~C1!

with
l-

g

h-

f 0~ t !5
4

p
exp~at̃ !arctan@exp~2at̃ !#, ~C2!

f 1~ t !5
8

p2 exp~at̃ !E
0

exp~2at̃!dy

2y
lnS 11y

12yD , ~C3!

a5
4

3
1
11

12

ln~ 11
6 !

ln~2t!
, t̃5

t

tef
~H !. ~C4!

Both Nr50,1* (t50) values are normalized to unity, an
the timet̃ is measured in units of the effective lifetime of th
fundamental modetef

(H)51/(Ggf) ~Doppler profile!. The
temporal behavior of bothNr50,1* is shown in Fig. 8~solid
curves!; this result is equivalent to taking into account a
modes with their respective decay time constants. The o
mode approach~Fig. 8, dashed-dotted curve!, i.e., Eq. ~8!
with the assumption ofm50.5 for all times, is equivalent to
ignoring all the higher-order modes~we neglect here the dif-
ference between the lowest-order mode decay fa
gf5qef

H andqef
(m50.5) values!.

As can be seen in Fig. 8, the functionsf 0,1 in Eq. ~C1!
have a monotonic behavior fromf 0,1(t50)51 to

f r50,1~ t ! .
t→`

c, ~C5!

with

cr50
~D ! 5

4

p
.1.27, ~C6!

cr51
~D ! 5

8

p2 .0.81. ~C7!

FIG. 8. Normalized decay curves of the total number of exci
atoms in an optically thick slab, Doppler line, a weakly excit
case. The timet is measured in units of the ground-state Holste
time tef

(H) . The solid lines represent the exact analytical solutio
for r50 @Eqs. ~C1! and ~C2!# andr51 @Eqs. ~C1! and ~C3!#, as
indicated in the graph; the dashed-dotted line gives the solu
obtained with our one-mode approach~both r50 andr51); the
dashed line represents the solution obtained taking into accoun
correction Eq.~C22! for the caser50 as discussed in the text.
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For the initiald distribution, the fact thatc is larger than
unity can be interpreted in the following way: at early time
fewer photons can escape~because the emitting atoms a
concentrated in the center of the medium!. The fact is also
reflected in a larger total density at late times; i.e., theam-
plitude of the lowest-order mode is larger. For the unifor
initial distribution, the explanation is the other way round

We have thus derived the error at late times for the spe
case of an initiald distribution and an initial uniform distri-
bution. For the more general case of initial functio
nr* (x,t50)5nr* (r ) with 0,r,1, the results can be ob
tained from the usual Fourier~multi mode! theory. In this
case, the excited-state distribution is given by

nr* ~ t,x!5(
l50

`

^nr* uc l&^c l ux&exp~2Ggl t !, ~C8!

where, according to Dirac notations,^c l ux&5c l(x) is the
normalized space distribution for thel mode,gl is the cor-
responding escape factor, and^ f u f̃ & indicates the scalar prod
uct:

^ f u f̃ &5E
0

Rdrr k21

Rk/k
f ~r ! f̃ ~r !. ~C9!

Function nr* (r ) is of the space-step type:nr*51 when
r,r andnr*50 for r.r.

In the one-mode decay regime, fort→` all terms in Eq.
~C8!, except those referring to the fundamental mo
( l50), vanish. Thus, forN* (t) we have

N* ~ t ![^nr* ~ t !unm50& 5
t→`

^nr* uc f&^c f unm50&exp~2Ggft !

5c0exp~2Ggft !, ~C10!

wherenm50(x) denotes the uniform functionnm50(x)51 in
the volumeV, andc f is the normalized ground-state mod
An approximate expression ofc f is @see Eq.~12!#

c f5A0S 12
r 2

R2D g

, ~C11!

A0
25

G~k/212g11!

G~k/211!G~2g11!
, ~C12!

where the constantA0 is the normalization factor for the
space weight functionr k21/(Rk/k) appearing in Eq.~C9!.

According to our approach@see Eq.~11!#, the temporal
behavior Napp* with the initial condition N* (t50)
5^nr* unm50& is

Napp* ~ t !5 c̃0exp~2Ggft !, ~C13!

with c̃05^nr* unm50&. The ratioc5c0 / c̃0 plays the same role
~late-time deviation from the case that the initial distributi
is the fundamental mode! as that of the constantc in the
decay of Eq. ~C5!. The decrease ofc from the initial
(t50) unit value is a measure of the inaccuracy of the o
mode approach. Using Eqs.~C10! and ~C13!, we obtain for
c:
,

al

e

-

c5
G~k/212g11!G~g11!

G~2g11!G~k/21g11!
F~2g,k/2;11k/2,r2!,

~C14!

whereF is the hypergeometrical function@29#.
The expression Eq.~C14! can be simplified by using the

series expansion of the functionF @29# for the two limit
casesr.0 andr.1:

c5
G~k/212g11!G~g11!

G~2g11!G~k/21g11!
, r.0, ~C15!

c5
G~k/212g11!G2~g11!G~k/211!

G~2g11!G2~k/21g11!

1

rk , r.1.

~C16!

Table II gives the values of thec factor ~in brackets for
Doppler profile!, evaluated according to Eqs.~C15! and
~C16! for the geometries and the spectral profiles inve
gated in this paper.

The difference (.10%) between thec values appearing
in Eqs.~C6! and~C7! and those reported in Table II in brack
ets ~for slab, Doppler case,r50, r51) are caused by the
fact that the spatial distribution of the fundamental mode
not exactly identical to the power-law distribution wit
m50.5. This fact produces some error in the evaluation
the overlapped integralŝc f unr* & and^c f unm50& entering the
ratio c0 / c̃0. Note that, when exploiting the variationa
method for the evaluation of thegf factor for the fundamen-
tal mode, overlapped integrals^c0u f & of the same kind are
encountered. Thus, the occurrence of a similar discrepa
(.10%) between the factorsqef

(m50.5) andgf ~see Table I! is
not surprising. As these discrepancies are observed also
the cylinder and sphere geometries~Doppler case, see Tabl
I!, in order to reduce the problems related to the one-m
approach for the Doppler case, we have to increase thc
values~in brackets, Table II! from the declared unit value by
a factor 10%, as reported in Table II. On the contrary, for
Lorentz profile theqef

(m50.5) andgf are almost identical, since
the escape factor depends much less on the spatial dist
tion of the excited atoms, so no correction to thec values is
required.

The above error analysis also forms the basis for the
troduction of a correction factor. Let us consider the ca
r50. At early times, we have to increase the optical opac
by a factorD @t (M )→t (M )(11D)# in order to change the
steepness of the decay curve~see Fig. 8, solid curve!, i.e., in
order to recover the behavior computed above. At late tim
this D correction must vanish. At intermediate times, w
need some kind of interpolation. The easiest way to inclu
such a time-varying correction is to tak
D5DrN* (t)/@N* (t50)#. This leads, in Eq.~11!, to the re-
placement:

t~M !→t~M !S 11Dr

N* ~ t !

N* ~ t50! D . ~C17!

The corresponding solution,
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tG5E
N* ~ t !/N* ~ t50!

1 du

uqe f
~m50.5!

„t~M !~11Dru!…
, ~C18!

is obtained forr;0, whenVA /V;rk;0. For large Doppler
opacities (t (M )@1), the factorization 1/qef„t

(M )(1
1Dru)…5(11Dru)/qef(t

(M )) can be introduced@see Eq.
~20!#, which allows to write Eq.~C18! as

tGqef
~m50.5!~t~M !!52 lnS N* ~ t !

N* ~ t50! D1S 12
N*

N* ~ t50! DDr.

~C19!

For N* (t)!N* (t50) ~one-mode regime! it is

N*

N* ~ t50!
5
t→`

expS 2
t

tef
~H !D exp~Dr!. ~C20!

Equation~C20! is identical to the exact solution@Eqs. ~C1!
and ~C5!# for t→`, if we make the following substitution

exp~Dr!.11Dr5c. ~C21!

The dashed curve of Fig. 8 has been obtained by using
~C19! for Dr50

(D) 5cr50
(D) 215p/421. It demonstrates the

considerable improvement of the accuracy~to better than
5%) achieved by including the modifications of Eq.~C17! in
the solution of the master rate equation@Eq. ~11!#.

For the caser.0, the corrections are smaller due to t
nonlinear effects mentioned in Sec. V A. Moreover, in t
caser51, the bleaching of the vapor at early times cau
the (cr5121) value to be practically zero~see the discussion
in Sec. V A!. Thus, theDr variation onr from the initial
valueDr5150 to Dr505cr5021 can be approximated as

Dr5~12rk!~cr5021! . ~C22!

The appearance of thek power in Eq.~C22! is caused by
the fact that the same power index appears in Eqs.~C15! and
~C16! for the c factors.

APPENDIX D

The considered geometrical model for a partly exci
cylinder or sphere at the beginning of the decay is a cylin
~or a sphere! with a hole inside~simulating the region with-
out absorption!, filled with emitting atoms@see Fig. 1~d!#.
We investigate here in detail the caser;1. Photon absorp-
tion occurs at the cylinder~or sphere! boundaryS, in a layer
with a small thickness,R2r A!R, but with a rather large
optical opacity,t5k0n(R2r A)@1.

Since the geometrical dimension of the absorbing reg
(R2r A) is small compared toR, we can approximate the
optical pathk0nDL traveled by the photon emitted at di
tancer from the cell center@see Fig. 1~d!# as

k0nDL5
t

cosf r
. ~D1!

Here, the anglef r lies in front of the sider in the triangle
OrR @see Fig. 1~d!#. For a cylinder,q(r ) is defined as
q.

s

d
r

n

qC~r !5E
f,u

dV

4p E dnwnexpS 2un

t

sinucosf r
D , ~D2!

wheref,u are the angles determining the photon flight d
rection in a spherical coordinate system centered inr , and
dV5sinududf is the solid angle. For a sphere, the expre
sion forq is similar, but in this case the term sinu must be
dropped.

The inner integral~integration over the frequency variab
n) gives a transmission factorT @Eq. ~19!# ~for the path
determined byu andf). Using the factorization propertie
of T @Eq. ~20!#, we can write Eq.~D2! as

qC~r !5T~t!E
0

pdu

2
~sinu!2g11E

0

2pdf

2p
cos2g~f r !,

~D3!

with the properties

Rsinf r5rsinf, cos2~f r !512
r 2

R2sin
2f, ~D4!

where the notations of Fig. 1~d! have been used.
Two limiting cases can be evaluated easily: emission

the center of the hollow cylinder~i.e., r50) and emission
close to the boundaryS (r.R). In the former case,f r50,
while in the latter,f r5f. With these simplifications, Eq
~D3! reduces to

qC~r50!5T~t!
ApG~11g!

2G~g11.5!
,

qC~r5R!5T~t!
1

112g
. ~D5!

When we compare these expressions to Eq.~18! with
m5` (d localization of the distribution, the expression
brackets being equal to unity!, we see thatqC(r50) as
given in Eq.~D5!, is identical toqef

(d)(t) for k52 ~cylinder!.
Similarly, qC(r5R) is identical toqef

(d)(t) for k51 ~slab!.
This can also be interpreted physically: a hollow cylinder
seen from its center is a normal cylinder with optical thic
nesst; a photon emitted close to the boundary, on the ot
hand, ‘‘sees’’ a plane-parallel layer.

The escape factorqr for r;1, determining the total pho
ton flux, is an average ofq(r ) over the cylinder~or sphere!
volume:

qr~t!5E
0

Rdrr k21

Rk/k
q~r !. ~D6!

The integration overr can be performed analytically fo
q(r ) @Eq. ~D3!#, exploiting the properties given in Eq.~D4!.
The final results for both cylinder (C) and sphere (S) are

qr'1
~C! 5

2

Ap

G~g11.5!

G~g12!
qef,k52

~d! ~t!, ~D7!

qr'1
~S! 5

1

11 2g/3
qef,k53

~d! ~t!, ~D8!
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where the subscriptk indicates the geometry according
the notations introduced for Eq.~18!.

With the factorization of Eq.~20!, we can rewrite Eq.
~D7! in such a way that we have a correction in theargument
of the escape factor.

For a sphere, we use the approximation (112g/3)
'(111/3)2g, to get

qr51
~S! .qef,k53

~d!
„~11D!t…, DS5

1
3 . ~D9!

For a cylinder, this procedure is more complicated. Let
introduce the functionf (g)5Ap G(g12)/@2G(g11.5)#.
A series expansion overg for such function gives, for the
first terms, f (g).11@(ln421)/2#2g.@11(ln421)/2#2g.
Including this series expansion into Eq.~D7!, we get

qr
~C!5qef,k52

~d!
„~11D!t…, DC5

ln421

2
.0.19.

~D10!

APPENDIX E

The factorl mentioned in Sec. V C can be compute
from the requirement that the behavior at late times sho
be correct. Let us thus rewrite the rate equation~42! for the
final stage of the decay, ruled by the fundamental mode c
acteristics whenNi* (t);Ni* exp(2Ggft):

2gf~t~M !!NA*52gf~tA
~M !!NA*1~N*2NA* !

1

l
qex~tA

~M !l!.

~E1!

It is worth while to recall that we make no differenc
between the escape factorsgf andqef

(m50.5) . Thus, Eq.~E1!
allows a straightforward determination of thel values:

l112g~12r2g!5
N2NA*

NA*
qex~`!

gf~`!
L~tA

~M !!,

L~tA
~M !!5

qex~tA
~M !!

gf~tA
~M !!

gf~`!

qex~`!
, ~E2!

by using the factorization expressed in Eq.~20! for large
t (M ), tA

(M ) :

gf~t~M !!

gf~tA
~M !!

5S tA
t D 2g

5r2g,

qex~ltA!l215qex~tA!l2122g. ~E3!

We have introduced into Eq.~E2! a variableL depending
on the regionA optical opacity. For the sake of simplicity,
special normalizationL(tA

(M )5`)51 is chosen for all ge-
ometries under consideration~see Fig. 9!. Note that, from the
asymptotic behavior ofqex(t) @see Eq.~34!#, it follows
qex/gf5(2g)qef

(d)/(kgf) for larget.
s

ld

r-

According to the considerations presented above,
analysis of Eq.~E1! for the Doppler profile casegD50.5 is
the most important. The approximation given in Eq.~12!
allows one to write explicitly the values ofN* andNA* in-
volved in Eq.~E1!:

N*5E
0

R

drr k21A12
r 2

R2, NA*5E
0

rR

drr k21A12
r 2

R2.

~E4!

The final result, which can be obtained by exploiting t
ratio q (d)/gf reported in Table I, and performing some m
nipulations, gives expressions ofl for the three geometries
under investigation:

lk51
2 5

p

4

12r2/2

2r

12r@128/~3p!#

12r2~12p/4!
Lk51~tA

~M !!,

~E5!

lk52
2 5

4

3p

12r2/2

3r2
11r

12r2/3
Lk52~tA

~M !!, ~E6!

lk53
2 5

3

8

12r2/2

5r3
117r/3

120.4r2
Lk53~tA

~M !!. ~E7!

Speaking strictly, in Eqs.~E5!, ~E6!, and ~E7!, the term
A12r2 has to be stand instead of the multiplier (12r2/2). It
means thatl;0 when r;1; i.e., we have no correction
factor due to regionB, if regionB does not exist. However
if the factorl has zero value, the second equality of Eq.~E3!
fails to be valid. For this reason we have replacedA12r2 by
its expansion (12r2/2).

This substitution does not affect noticeably our results

FIG. 9. Dependence ofL determined by Eq.~E2! on the the
optical opacitytA

(M ) of regionA. All curves are normalized to the
unit value at the infinity (tA

(M )→`) for three geometries:~i! a
sphere—k53 ~dashed!; ~ii ! a cylinder—k52 ~dotted!; ~iii ! a
slab—k51 ~solid!.
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r,0.8. On the other hand, forr.0.8 the regionB cannot
influence strongly the zone-A excitation, so that the exac
value ofl turns out to be of secondary importance.

It is interesting to note that whentA.1 and 1@r the
correction factorl is larger than unity indeed. This fact lead
to a decrease of the rate constantqex for secondary reabsorp
d
e,

c

-

A.

pt.

pt

z,

,

n

tion in regionA that is physically reasonable as it was d
cussed above: if all emitting atoms are assumed to be
regionA ~i.e., without correction!, then, of course, also the
reabsorption rate is higher than when the emitting atoms
distributed all over the regionB ~which can have a large
size!.
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