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Nonlinear radiation trapping in an atomic vapor excited by a strong laser pulse
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We investigate radiation trapping in an atomic vapor which has been excited by a strong short laser pulse.
Since the saturation of the vapor by the pulse leads to a decrease in the effective absorption coefficient, the
radiation trapping becomes nonlinear. We derive approxinaaggytical expressions for the excited-state
density in the directly excited region, the fluorescence-excited region, and the density averaged over the whole
cell. Starting out from fairly simple approximate expressions based on a prescribed distribution of excited
atoms, we then develop physically motivated correction factors that drastically improve the accuracy. All these
expressions are given for three important cell geometries: the plane-parallel slab, the infinite cylinder, and the
sphere. We compare our results to accurate numerical solutions, and find agreement within 5—-10%. We then
derive the decay time of the emergent radiation, and find that it can be smaller than the natural lifetime of the
excited atoms, in agreement with recent experimental results obtained for sodium vapors.
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PACS numbgs): 51.70:+f, 95.30.Qd, 32.80.Pj, 32.56d

I. INTRODUCTION fective” absorption becomes zero, obviously leading to a
vanishing of the radiation trapping effects.

When an excited-state atom decays to the ground-state, it One situation that is of particular interest to experiments
emits a resonance photon. Such a photon can be absorbedibychemical and photoplasma physics is the following: we
another ground-state atom, leading to the creation of anothexxcite part of the vapor cell by a very strong, short laser
excited-state atom. In an atomic vapor cell, this absorptiorpulse. Subsequently, we observe the excited-state distribu-
and reemission can be repeated many times until the photdion and the emergent radiation. As time passes, more and
escapes from the cell. The process is known as “radiatiormore atoms will decay to the ground state by natural decay,
trapping” [1]. Obviously, it depends strongly on the absorp-so that the effective absorption coefficient increases. How-
tion coefficient of the atoms in the vapor. It is of great inter- ever, some of the fluorescence photons are reabsorbed, which
est in chemical physid®], and has been studied extensively diminishes the increase in the effective absorption coeffi-
for more than 70 years. Most of the investigations assumed @ient. This interrelation causes a strong nonlinearity in the
weak excitation of the vapor, e.g., by collisions with elec-Holstein equation.
trons, or radiation from discharge lamfsee, e.9.[3-7)). Investigation of the nonlinear Holstein equation is a rela-
The distribution of excited-state atoms can be computedively new field. While the effects of saturation on radiation
from an integrodifferential equation, the so-called Holsteintrapping in steady-state vapors and plasmas have been stud-
equation(also known as the Biberman-Holstein equation ied for 30 years because of their importance in astrophysics
Under the assumption of weak excitation, it iSreear equa-  ([8] and references therginnonlinear time-decay phenom-
tion. ena have received attention only recently, due to the wide-

When an atomic vapor is excited by a very strong lasespread use of powerful pulsed lasers. Previous investigations
beam tuned to a resonance transition, the vapor becomes this problem have used purely numerical methods: Monte
saturated; i.e., the ratio of ground-state atoms and excitedzarlo simulationg9,10], numerical solutions of the equation
state atoms becomes equal to the ratio of the statisticalf radiative transfer, coupled with rate equatiddid], or
weights of these levels. This means also that the stimulatefinite-difference solutions of the Holstein equatifi®2,13.
emission becomes equal to the absorption, so that the “effhese methods require, however, a large amount of CPU

time, which makes it difficult to study the influence of vari-
ous parameters by making repeated simulations. An analyti-
*Also at Dipartimento di Fisica della Materia e Tecnologie Fi- cal solution of the problem would thus be desirable. In a
siche Avanzate, Universitdi Messina, Salita Sperone 31, 1-98166 recent communicatiofl4], we have outlined an approxi-
Sant'Agata, Italy. mate analytical computation of the excited-state distribution
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processe.g. the ground state and first resonance state of an
alkali-metal atony (ii) the walls of the vapor cell are com-
pletely transparent; i.e., photons that reach the walls escape
from the cell, and are not reflected back into the vaiar)
the flight time of the photons is much smaller than the natu-
ral lifetime of the excited atomsiv) particle diffusion is
negligible;(v) collisional quenching and branchirtge., loss
R 4 of excitation when atoms decay to the ground state through

/' f some intermediate, untrapped transijios neglected(this

M assumption will be discussed in more detail in Seg; [Ni)

the emission frequency of a spontaneously emitted photon is
T independent of the frequency of the previously absorbed
photon[complete frequency redistributiofCFR)], and the
© (d) direction is isotropic{vii) the geometry of the vapor cell can
be approximated as “one dimensionala plane-parallel
slab, an infinitely long cylinder, a sphereand the initial
excitation depends only on one spatial coordinatehich
determinega) the distance from the center plane of the layer,
(b) the radial cylinder coordinate ar(d) the distance from
the sphere center. This also implies that there is no tight
focusing of the laser beam, since this would give rise to
] ] two-dimensional2D) effects.
averaged over the ceII._ In this paper, we _denve a somewhat These assumptions are also usually made for the compu-
related method that gives also information on 8matial  (4iion oflinear radiation trapping; they are often fulfilled in
distribution of the excited-state atoms, and we derive phys'raboratory situationgfor a discussion, see, e.§7]). Further-
cally motivated correction factors that drastically increasemore, we assume thétiii) the duration of the exciting laser
the accuracy of the computations. Comparisons with numeriyse js much shorter than the natural lifetime of the atoms;
cal result§ show.th.e accuracy to be usually better than 5%(ix) the laser pulse is strong enough to cause appreciable
In particular, it is demonstrated that the method of re-q5¢ration in regiom. For example, in sodium atoms, which
duced optical depth, which up to now has been employed foi the most investigated cafts, 16, this requires intensities
plane-parallel geometries onlgee, for example[15]) may  |arger than about 3 kWi/ch On the other hand, the intensity

be extended with some corrections to describe nonlineaf st be low enough that high-field effects such as Autler-
trapping decay problems for curvilinear geomet@gindri- — Toynes (ac-Stark splitting effects are negligible. For the
cal and spherical We will also demonstrate that the radia- validity of the Holstein theory, the presence of Rabi side-

tion emerging from the vapor can decay faster than with thgy,ngs must be ignored. In other words, Rabi sidebands must
natural lifetime of the atoms. be overlapped within the laser line. Considering typical

This work is organized as _follows: in S_ec. Il, we define ised laser bandwidthapproximately 0.01 niy this poses
the problem, specify the physical assumptions of the model,, sper fimit to the laser intensity, which must be smaller
and derive the mathematical description. In Secs. Ill and IV o5 MW/em?2 [17]. In that range of intensities, multi-

we derive an approximate analytical solution for the eXCite_d'photon ionization is also negligibf@8,19. Due to the short

state density averaged over the whole cell, and over the inigration of the laser pulséew nanosecondsand the con-
tially excited region, respectively. Section V derives correc-gjjered intensity range, the generation of nonthermal elec-

tion factors for these distributions that greatly enhance thg.,,o during the pump phagee., while the laser pulse is pn
accuracy of the method. Section VI discusses the phenomena '

of a fast(subnatural decrease of photon flux emerging from  Thase conditions describe a vapor that is “softly"” excited

the slab, and compares the computed results with data of 8y, he |aser: they are not valid for experiments with explod-
experiment performed on sodium vapors. Appendices Ang targets, where movement of atoms plays an important
fchrough E pre;ent details of the mathemical treatments us%b; those experiments are beyond the purview of this paper.
in our calculations. We are concentrating on a vapor in a sealed cell, where the
short laser pulse leads only to an excitation of a bound state
(typically the lowest resonance statdhe LIBORS (light
ionization based on resonance saturagtibeory predicts that
We consider the following situation: a laser illuminates aeven under these conditions, practically 10% ionization can
part (region A, with boundaryS,) of an atomic vapor cell; occur during the decay phase of initial gas medium excita-
see Fig. 1a) [see also Fig. (t), where the cell has the shape tion [20,21].
of a large flat slab The aim of our computation is to find the In our conditions, both the rate equations and light-vapor
excited-state distribution* (x,t); i.e., we want both spatial interaction are treated within the frame of conventional
and temporal informationx denotes the three-dimensional Biberman-Holstein theory. We start out by defining math-
position vectoy on the excited state density. For the compu-ematically the effective spectral absorption coefficient
tations, we make the following assumptior(s; only two  k(»,n*), which describes the difference between absorption
levels in the atomic structure are relevant for the trappingand stimulated emission. It depends thus on the ground-state

FIG. 1. Sketch of the typical situation for the laser excitation of
a gas mediunga), of the geometry relevant for the determination of
Nx(t) (b), of the slab(c), and cylinder geometrie@) discussed in
the text. RegiorA is directly excited by the laser pulse; parameter
p gives the relative size of the laser beam.

I. FORMULATION OF THE PROBLEM
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and excited-state densitigs, andn*, respectively, which in  Formally, the exponential dependence of the Doppler profile

turn depend on spatial coordinateand timet: can be recovered by placing= up= in Eq. (6).
n* (x,t .
k(%) = ko 0,0, (x,1)| 1 : ((X t)) g_i} ) lll. TOTAL EXCITED-STATE DENSITY
1 ]

A. Derivation of closed-form equations

whereg, andg* are the statistical weights of the ground and  In a recent pap€el4], we derived a method for the com-
of the excited state, respectiveky, is the absorption coeffi- putation of the total numbe¥* (t) of excited atoms. We first
cient per unit atom in the center of the absorption ling, integrate Eq(4) over the entire volum& of the cell:

and the line shapé, satisfiese,,:V0= 1.

*
The opacityy between two pointx,X, separated by a dN* (1) :_FJ d%n* (X.1) 1_f BRG(xXon*) |,
distancep=|x—X| is given by the integral dt v
= 3
X(V,X,Y;n*)ZFk(V,x|)dl 2) N*—fvn*(x,t)d X. )
X

The expression in brackets in E) represents the local
escape facto}(X), i.e., the probability that a photon emitted
at the pointx escapes from the vapor cell without being
reabsorbed22,23. This interpretation is valid for arbitrary
spatial distribution of the absorption coefficidad].

over a straight lineq; connectingX with x.
The probabilityG that a photon emitted atis reabsorbed
at x depends ork according tq 3]

1 1

G(x.X:n*)= i K(v,)K(».%) Thus, Eq.(7) can be rewritten as a rate equation:
P f K(v,X)dv dAN*
B gr =~ IN"9ed7(N¥)), ®
Xexd — x(v,x,x;n*)]dv. (3

, L whered is a spatially averaged value 6{x), weighted by
The excited-state density is decreased by natural decgy,q spatial distribution of excited-state atonis(x,t):
with the radiation rate constamt and it is increased by re-

absorption of photons that are emitted somewhere else in the .
vapor. It is thus described by the following Holstein equa- fvn*(x,t)l‘}(x)d X
tion: Vo= (9)
* 3
an* (x,t _ fn (x,t)d°x
%=—Fn*(x,t)+l‘f G(x,X;n*)n* (X,1)d3%. v
(4 We next introduce the “optical depth’r of the vessel,

which describes the current opacity of the whole vessel mea-
We see that the reabsorption probabilidyis the kernel of sured along the axis (for the slab 7= x(vq,X,,X,,n*),
the (nonlineaj integro-differential equation. The nonlinear wherex,.=(0,0,0) andx,.=(0,0,R) [see Fig. 1c)], or mea-
behavior occurs due to the dependence of the absorption ceured along the radial coordinatéfor a cylinder or sphene
efficientk on n* [Eq. (2)]. The following relationship betweem and N* is of great
The initial condition is given by the assumption of com- importance:
plete saturation in zon& at the end of the pulsé€0): the

excited atom densityx becomes a fraction of the atom total *y— (M) N*(t)
density,n=n* +n;: T(N")=7"11- NE (10
’ 1- S
R In Eq. (10), N$=Vng is the maximum possible number
nA—nS—ngl+ g* ®) " of excited atoms, corresponding to the entire excitation of

the gas volumeV, and #™)=nkyR is the opacity without
Thus, according to Eq1), the absorption by the gas medium stimulated emissiofi.e., in the linear cage
vanishes, ané(»,n%)=0 in the region A. We assume that  The transformation to “optical-depth” coordinatpssing
the regionA is always in the center of the vessel; its size Ed. (10)] is exact{21] for a plane-parallel slab with an arbi-
[radiusr ,, see Fig. 1a)] can be conveniently expressed in trary spatial distributiomy (x). It is also strictly valid, as
R units by introducing the parametpe=r,/R. follows from Egs.(1) and (2), for uniform n3 (x) in cylin-

The behavior of the line shapg, in the wings of the line drical and spherical geometries, and can be employed ap-

determines the trapping in an optically dense medium. Acproximately for arbitraryn* (x) in these geometries, as will
cording to the quasistatic theory of the spectral line broadenbe discussed below. Due to E4.0) the problem of evaluat-
ing, the decrease df, in the wings is ruled by a power-law ing the escape factof; Eq. (9) may be converted to the
function[5,15] case of a spatially homogeneous ground-statesorbing

atom distribution in a vessel of current opacity

0,~|v—rvo| "™ (6) The rate equation foN* can now be written as
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*

dt

N* also Eq.(13) by the following replacementd; is changed
1—N—§) : 1D py 9 M(1—u)]+ (T, +Q)/T.
This shows that a rather straightforward inclusion of
In order to evaluate this equation, we need the effectivddranching and quenching is possible. However, for the
escape factof,;, which in turn depends on the spatial dis- analysis of the lowest resonance state of sodium atoms
tribution of excited atomsi.e., what we want to compute treated explicitly in the present work, these effects can be
We circumvent this problem bgssuminga certain spatial neglected. Branching cannot occur, since there are no inter-
distribution n* in Eq. (9), namely the fundamental linear mediate levels between the excited and the ground state. For
mode distributiom;(x), which is the spatial distribution that Self-quenching, we can compute the typical rates as the prod-
occurs fort— [5,7]. n¢(x) can be expressed through the uct of the density (18-10" cm™3), the self-quenching
following analytical approximate expressif,15]: cross section (10" cn¥), and the velocity (16 cmis).
Quenching effects occur thus on a time scale of 18,
2\ which is much larger than the observation time, typically less
nf(r)=(1— E) ' (12 than 10°® s. If a noble gas is present in the cell, then the
foreign-gas quenching is of the same order as the self-
where the spectral parameter= (u—1)/2u is determined quenching: while the densities for the noble gas are much
by the wings of the line shape as given by E@). For all  higher, the quenching cross sections are much lower. For
possible profiles with & y=<0.5, the line has broad wings. other experimental situations, however, quenching or
For the two most important line shapes, i.e., for Lorentz andranching might be relevant.
Doppler profiles,y. =0.25, yp=0.5, respectively. At earlier The situation becomes even more complicated if there is
times, the actual excited-state distribution can differ from thevery strong hyperfine splittinghfs) of the ground state, as
fundamental-mode distribution. The error introduced by thisoccurs in rubidium and cesium. In these atoms, the splitting
difference will be analyzed below. is so strong that the hf levels must be regarded as distinct
With the assumption of a time-independent spatial distridevels that are all appreciably populated, so that the transi-
bution in Eq.(9), Eq. (11) becomes a one-dimensional non- tions from the excited state to hfs levels are all trapped. In
linear equation for the determination M. With the initial ~ that case, we have to set up a system of equations similar to
condition that the volumeV, is completely saturated EQ.(8), but with the escape factor depending on the densities
[N*(t=0)=N%V,./V], we get an implicit equation foK*, in all states. To our knowledge, a closed-form solution of the
the excited-state density integrated over the whole cell:  type of Eq.(13) is not yet available for that kind of problem.
Furthermore, new physical effects, such as optical pumping
VA) [25], can occur in these configurations. Numerical solutions

=—TN* g 7™

ValV du 1 N*
= fN*/NET WZI<N_5) _|( v of this problem have been given j@6]. o

(13) Nevgrtheless the two—le\{el model w'orks.nlcely in the case

of alkali atoms such as sodium. If the linewidth of the laser is
where large, one can consider the resonance saturation of the

3S;,— 3Py, (or 3S;,,— 3P, transition to lead to an equal
idu 1 population of all hf sublevels. During the decay phase, the
|(p)=f U O (10T (149 Jarge Doppler or Lorentz linewidth covers all hyperfine ef-
fects[27].

According to the derivation discussed in Appendix B, the !N the remainder of the paper, we will confine our atten-
integral I (p) has closed-form approximations for both Lor- tion to the canonical case of a true two-level atom without

p

entz and Doppler profiles: quenching or branching.
) 15 B. Computation of the escape factor
p)= A7 M(1-p)/2.25] We now take a look at the escape factor for various spa-

tial distributions, and investigate the error introduced by the

1 1+VJ1-p assumption of a time-invariant spatial distribution. As men-
X JlTplnl—l\/lTp_z ' (15 tioned above, the assumed distributionis close to the ac-
tual one at late times, but not necessarily at early times. The
2 ~In(p) largest differences will occur i¥/, is very small[in that
1®)(p)= e -1|. (16 case, then* (x,0) approximates & distribution at the center
Ve [ (1=p)/2]| 1-p of the cel), or if Vo=V [in that casen* (x,0) is unifornd. In

order to find the maximum error introduced by this differ-

Thus, these equations provide an analytical solution fo nce, we now examine the escape facldEs. (9)] for a
one important parameter of the vapor, the total number of.ooq class  of power-law  distribution functions

excited-state atoms. n* (x,t) =n,.(r):
If also quenching or branching occur, then we would have ’ mea

to add a term — (I',+ Q)N* ] on the right-hand side of Eq. p2\m

(8), whereT', is the radiative decay rate of the untrapped nm(r):(l_ ﬁz) , 0s=m<eo, (17)

transitions emanating from the excited state, &hds the

guenching rate for collisional quenching. This term modifiesFor a power indexn=0, ny(r) describes a spatially uniform



55 NONLINEAR RADIATION TRAPPING IN AN ATOMIC ... 3337

TABLE |. Escape factors for different geometries and line profiles.

Layer Cylinder Sphere
k=1 k=2 k=3
Doppler profileQp S(m=) : % 1
fundamental mode 0.91 1.58 2.14
372 8
m=0.5 1 — 53=2.67
6 1.85 3
m=0 I%T In7 Anr
. 27l (1.25
Lorentz profile S(m=o £ I 1
profileQ, ( ) 3 31(0.75 0.87
fundamental mode 0.81 1.12 1.34
16 8 .
m=0.5 12 g0 113 168 47
9 5\/E 2177\5
242 87 I'(1.25 6(
m=0 - ~
3 09 G oyl =169
distribution. For largem values, it is possible to write a c T(7)
series expansion of Eq(17) for r~0: (1-r2/R?)™= T =1 T ==, T(r2) = —5". (20)
exp(—mr?/R?). Thus,m— o corresponds to a sharp localiza- 1 T T
tion in the cell centefthe radiation constant @£ is known . o .
in this case as Biberman’s effective lifetimp4,27)): Accordlng to Eq.(19), the same factorization properties
n..(r)=8(r). Whenm= v, Eq. (17) describes obviously the as those given in the last equation of £20) are valid also
fundamental mode(r) [Eq. (12)]. for the escape factoB{"(rz). This fact will be used exten-

Thus the functions,(r) introduced by Eq(17) cover all ~ sively in the following. Note that the expression in brackets
space distributions* (r,t) occurring while the decay pro- in Eq. (18) becomes equal to unity whem—-co. It implies
cess takes place. that the part of Eq(18) not enclosed in brackets gives the

In Appendix A we derive a general formula for the as- 9D factor.
ymptotic behavior ¢=k,nR—=) of the escape factor, For Doppler and Lorentz spectral profiles, Ef8) can be
which is valid for all the three geometries considered in thiswritten as follows:
work:

(m) 1

Vi T(kl2+ ) Doppler: 9 (7)= ——, TO(1)~—,
(m) —
et (D =TT SF L6+ )T (x/2) mymin(7)’ Tyin( 7()21)

T(1+m—2y)T(k/2+m+1)
I TArm— (2t mt1—7y) "

(18 Q(m
Lorentz: ﬁ(m)(r)=\/;—, TH(7)~

ef
mT mT

(22

wherelI'(®) is the EulerT” function with argumentb. The
parameterx entering Eq.(18) describes the type of geom-
etry: k=1 for a plane-parallel slab of total thicknesf;2
x=2 for a cylinder with radiuRR; =3 for a sphere with
radiusR. The functionT(7) in Eqg. (18) gives the transmis-
sion factor through a layer of opacity[15,23:

The values oQ{"” andQ{™ parameters are presented in
Table | for the three geometries considered in this paper. In
the table, the escape factors of the grouHdlIstein mode
9M=QT(r) are also reported[7]. Note that
'Aa+m—-2y)=I'(1-2y)—« when m=0 for Doppler

profile (v=0.5). This divergence is the reasfit8] for the
T( T):J o.exp—70,)dv, ¢,= Ky (19) appearance of the function )(in Table 1.
! e T Jkd Equation (18) is not valid in the low-opacity region
r<5. An expression suitable for the evaluation ®§" is
with the well-known propertiefl5] derived in Appendix A(see alsd28)):
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I'(k/l2+m+1) o » dz j — o~
(m) — 1+m + * Kve
9M(7) F(h2) 2 fo dve,76, T2 r VBG(O,x)n (X, t)d3x. (25)
X1 2+ m(2)K 2(2), (23) The first term in brackets on the right-hand side is the

escape factor from regiofy, similar to that introduced in Eq.
wherel, andK, are modified Bessel functions of the first (7) (i.e., the probability of escaping from the center of region
and second kindl29]. In the case that the excited atoms areA without being reabsorbgdSince we have already made an
concentrated in the center of the ceth{ =), Eq.(23) im-  assumption about the spatial distribution of excited-state at-

mediately reduces to oms, the evaluation is straightforward:
1-«l2 fop %
_ N~ _ m=oo *
f}g;”(r):F(K/Z) ; dvgo,,r&vfmvdzz"/z 2K a(2). 1—fVAG(r—0,x)ﬁ— et (TA(D), (26)
(24 .
with

Note that, for allm values,9{"’(7)=1 for 7~0. This is in .
agreement with a general consideration: photons escape the * oty = (M) 1 _ Na

. - TA(t)=Tp (l *>, (27)
gas medium freely for small opacities. S

The comparison between differe@t™ values(see Table
) points out that for a Doppler profile, wher1, the es- where 7 =konr, is the maximum linear opacity for the
cape factors strongly depend on the spatial distribution oflirectly excited regiorA [compare with Eq(10)].
n*: for a uniform distribution (n=0), Qp contains a factor For the evaluation of the second term in E25), we use
In(7), which can become very large at large opacities. Fothe fact thaing is concentrated near the boundary between
other distributions, however, tf@(™ values are constants. region A and regionB. Thus, integration oveVg can be
restricted to a small volum¥, close toS,:

IV. DETERMINATION OF N (T) IN THE VOLUME A

| : - - ; d®XG(0X)
n this section, we derive a closed-form equation for o _ vy

nk(t), the excited-state density in the directly excited region | d*XG(0X)n*(X,t) = J n* (X,t)d%

A. We consider only early times; we know that at late times, Ve Va—0-Ve f d3x

the problem is linear and the spatial distribution is actually Va
described by the fundamental mode. We can thus make the (28)

following two simplifications:(i) within the volumeV,, the
densityn* remains practically uniform, so the total number
N7 of the excited atoms i is NV, ; this assumption will

The L'Hopital rule can be used to determine the ratio
appearing in Eq(28):

be fulfilled longer for a smaller rati%/,/V; (ii) the second- —(d/dr){}(f)

ary excited atoms in the regidd are localized mainly close f d>XG(0X)n* = ’g(t)—e , (29
to the surfaceS, [see Fig. 1b)]; excitation of atoms in the Vg (drdnvin) |,
regionB is due to the photons emerging from regibnThis

assumption is actually not fulfilled for a low-opacity vapor. where we have introduced the escape faaﬁtéf?:
However, we will see that the results of our derivation agree

well with the numerical calculations already for opacities 8 _ G e

7=2 (see Fig. 3, and radiation trapping effects in vapors Ve _1_fvrd XG(r=0x), (30

with even lower opacities are small anyway.

In the early stage of the decay, the optical thickness ofyhich corresponds to the Biberman escape factor for a vol-
region A remains small and the spectrum of the radiationyme of radiusr. According to the notations introduced just

emerging from regiorA is not affected by self-reversal. In gger £gs(7) and(17), 94 corresponds to the escape factor
this case, the dominant source of excitation in redgomas a

space behavior ruled by a power-law, with(¢)/d¢ de-
creasing as §nk,) 127, where ¢ denotes a coordinate in
the regionB along the direction normal t&,. For large dNX (1)
opacities, this distribution corresponds todadistribution =

with m=co,
Equation(25) can then be written in the form

*

N
—rﬂg?( TgW( 1- o ))N,’;(t)+F(N* )

near the surfac&, of regionA [see Fig. 1b)]. dt NSVa
Since by assumptiomj (x,t) is independent ok, it is N*
sufficient to consider the case= 0. Equation(4) can then be X D oy TX‘")( 1——2 ) ) , (31)
written as(for the sake of simplicity, we henceforth omit the NsVa
argumenti* from the kernelG)
where

dny * { j vt X x d9(x)

— =—nix(r=01)I'11—- d°xG(r=0x _ N Ve

dt | _, Al ) v ( ) 9o(X) = - 32
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and we have introduced the total number of excited atoms in The main idea for the correction factors is the analysis of
regionA, Nx=Vanj . the excited-state distribution for two crucial limiting cases:
The right-hand side of Eq31) consists of two terms. The (i) at the beginning of the decay, when the equations have a
first one is the rate with whichl, decreases because of the nonlinear behavior because of the saturation of the gas me-
photons leaving regio. The second term corresponds to dium by the laser pulsdji) in the final stage of the decay
photons that are emitted in regi@n(from secondary-excited (linear par}, which is ruled only by the fundamental mode
atoms and are reabsorbed in regigh Since the explicit space distributiom? , with an effective lifetime 110 9{").
dependence oN*(t) on timet is given by Egs.(11) and These limiting cases can be investigated analytically by vari-
(13, it is possible to derive a one-dimensional closed equaeus methods; the correct behavior of the solutions of Egs.
tion for the determination dfi}; (t) with the initial condition ~ (11) and (31) is then enforced by modifying the rate con-
N%(t=0)=n%V,. In practice, it is more convenient to solve Stants in these equations. If we can get a correct description

Eq. (31) by exploiting the time dependence Nf ont: at early and late times, we can anticipate that this description
will also work well at intermediate times, as is confirmed by
dNx(t) dNz dN* « am| o N* |\ dNx comparisons with numerical simulations. _
dt _ dN* dt —I'N* ¥ ( T (1— N_*) )W We can see from Table | that for a Doppler line shape the
S (33) escape factor depends strongly on the excited-state distribu-

tion, while this dependence is much weaker for the Lorentz

This allows us to treal’ as a function oN* in Eq. (31). p_rofile_. The Doppler shape thus represents the rr_lost_diﬁic_ult
Before discussing the results of our analysis, we preserﬁltua}tlon and will be at the center of our attention in this

here some features of the rate constagtthat will be useful section; the results are also valid for the Lorentz profile.

in the following:
A. Corrections to the one-mode approach

Fex(X) ~ X,  FelX) ~ 29yQIT(X)/ k. (34)

—0 X— 0

The first and most important assumption is that the
excited-state distribution does not vary with time; we call
In addition, according to the definition given in E§2), the  this the one-mode approacfalthough, strictly speaking,

following expression ford,, can be derived from Eq24):  there are no modes in a nonlinear problet early times,
this assumption is not true. The physical processes occurring

1-kl2 ro % at early times can best be explained for the slab geometry;
Yl T) = —=— dV%TGVf dz7"? K - 1(2). here we can replace the spatial coordinatby an optical
«I'(kl2) Jo 70 o
v depth coordinater:
(35
The behavior ofd,, as a function ok stated in Eq(34) (z,t)= kofzd'z' nl(z,t)_g_jn* (Zv 1, (36)
for small x follows directly from Eq.(35), whereas the as- 0 9

ymptotic behavior forx—oo is determined by Eqs(18)— ) . )
(22). which gives the opacity(z,t) of the slab between the coor-

Figure 2 shows the excited-state density in a slab witrflinates O and at the instant. This coordinate transforma-
7=10. Numerical solutions are shown as solid curves, andion allows one to treat problems with an inhomogeneous
the analytical solution®l*, N* of Egs.(11) and (31) (with absorption coefficient in exactly the same way as the well-
Ser= aérfn:O.S)) are represented with dotted lines. We see tha{mown problems with homogeneous absorption coefficients.

the agreement faN* is quite good, as anticipated from Ref. In the 7 space, the equation fé* (t) has the form(21]
[14]. However, the solutions faN , N5 show considerable " .
deviation_s, so that additional analysis is required to improve == —TN*(t) 5 d7n* (7,t) 9(7),
our solutions. a7 () —r(t)
—(t)
V. CORRECTION FACTORS (37)

In the previous sections, we have derived analytical equaahere d(7) is exactly the local escape factor for a layer of
tions, Egs(11) and(31), which explain the main features of current total optical opacity &t). Due to Eq.(36), and to
the nonlinear decay process. In order to derive this descrighe fact thamn=n;+n* is a constant along the space coor-
tion, we have introduced three basic assumptiinshe spa- dinate, we immediately obtain the relationship of E40),
tial distribution of excited atoms in Eq9) is always identi- which connectsr(t) with N*(t). This reduces the problem
cal to the lowest-order mode distributiofii;) the connection of evaluating the rate constafit; in Eq. (11) to a homoge-
between the current opacity(t) and N*(t) [Eq. (10)], neous absorption medium situation.
which is valid strictly for a plane-parallel slab, can be used Let us examine the case where the laser excites the whole
for curvilinear geometries(iii) all atoms in regionB are  vapor cell,V,=V (p=1). Thus, at the first instant, the ex-
concentrated near the boundary between regioaadB. In  citation is uniform, andr space ana@ space are equivalent.
this section, we will analyze these three assumptions ands time goes on, the decay will be strongest near the cell
compute the maximum error caused by them. More imporwalls, so that there we will have a larger effective absorption
tantly, we will derive physically motivated correction fac- coefficient than in the middle of the cell. This means that the
tors, which greatly increase the accuracy of the description(in geometrical spagesmall region where we have a larger
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TABLE Il. Values of thec constant for different geometries.

Layer Cylinder Sphere
k=1 k=2 k=3
) 37 4 1572
Doppler profilecy p=0 1.275~1.18 1.435=1.33) 1.57 —55=1.47
372 8
p=1 0.81| 55-=0.92 0.80(2~0.9)) 0.770.87
Lorentz profilec, p=0 1.11 1.20 1.27
p=1 0.97 0.96 0.95

percentage of ground-state atoms transforms intonar  (the presence of the numbers in brackets will be explained in
space larger region(in the caser)>1). Appendix O.

This implies in turn that, in the space, the distribution of The analysis of Appendix C allows one to estimate the
excited-state atoms decays very quickly to the fundamentaFinal error in the evaluation of the total number of excited
mode distribution. Furthermore, the error at early times isatoms N*(t) by means of Eqgs(11), (38), and (39) as
very small due to the following fact: The opacitft=0), ~5%. This is demonstrated by th¢* -curves of Figs. 2—4,
which is zero at the beginning of the process, remains smalvhich show N*, Nx, and Nj for various opacities
during the evolution of the_, distribution into the funda- (7=2,10) and intial excitationsp=0.25,0.5) for Doppler
mental distribution. However, the escape factdf” is not ~and Lorentz profiles. We see that we get good agreement
sensitive to the actuah values whenr(t) is small. We have (error less than 10%dor all cases. We see from the figures
seen in the previous sections that the differenc®jnbe-  that the agreement is better for Lorentz than for Doppler line
tweenm=0 andm=0.5 can become very large. However, shapes, in accordance with the results of the qualitative dis-
the above discussion demonstrates that the nonlinearity of
the problem actuallglecreaseshis difference.

1.0

If the laser excites only part of the vapor cell, then the ] \
initial distribution in 7 space is aS distribution: regionA 0.8t
contributes nothing to the opacity, so that all points in this 44 3
region are at-=0. As time increases, the fluorescence pho- 0.6 \
tons are emitted, and most of them are absorbed near the .
boundary S,, leading to a bleaching effect also in this 0.4
boundary region:rg(t)<7g(t=0). Moreover, there is an- 1/
other change in the coordinate: points in regioA (but with 0.2/~

z#0) that were previously at=0 are now at some point

7 different from zero, i.e., closer to the cell walls. These
effects again help to reach the fundamental-mode distribu-
tion in a relatively short time.

Finally, if the laser excites only a very small region in the
center of the slab, we have no nonlinearity at akkpace and
geometrical space are equivalent. The problem is the same as
a linear trapping problem with & initial distribution. Being
the most difficult situation, it also provides the limits for the
accuracy of the one-mode approach.

In Appendix C, we show how the correct behavior at
early and late times can be recovered by introducing a time-
variant opacity into the solution Eq¢ll) and (31), i.e. by T ==
substituting 0 20 40 60 80 100 120

N*(t) )
PN*(t=0))"

0.0 e
10 15 20 25

N*(tT)/N*(0)

(b)

M M
M7 M 1+A (38) FIG. 2. Slab with¥*™)=10, p=0.25: normalized decay curves

for the total number of excited atoms in all the considered volume
(N*), in regionA (N3) and in regionB (N§), for Lorentz(a) and
Doppler (b) profiles. The solid lines represent the result of the nu-
merical simulations, according {d.3]; the dotted lines are the so-
Ap: (1_PK)(Cp:0_ 1 (39 lutions with the analytical equations of Secs. Il and IV; the dashed
lines are the analytical solutions including the correction factors of
andc,_g is given in Table Il in the line “Doppler profile”  Sec. V.

where
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1.0 1.0

VNI S 0.0
0 2 4 6 1
=~ 1.0 8 0
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~ o
z ] (b)
e z ]
= = 0.5
> =] Moo
z | p=05
0.0 St
2 4 6 8 10

0.0 4T
0 20 40 60 80 100
tr

FIG. 3. Partially excited slab with various opacitied"=2 or
10 and various initial excitationsp& 0.25 or 0.5): normalized de-
cay curves for the total number of excited atoms in all the considin the center of the sphere has to cover a geometrical path
ered volume K*), in region A (N3) and in regionB (N§) for  length r, through regionA (which is transpareit and
Doppler profile. The solid and dashed lines represent the results ® —r , through regiorB, since the direction of propagation is
the numerical and analyticgEgs. (40)—(43)] simulations, respec- normal on the surface of the sphere. This is the shortest
tively. possible length for escape. However, a photon that is emitted

at some other point in regiof can have a direction that has

cussion given above. It is thus also clear that the error for dome angle with respect to the normal on the surface, so that
Voigt line will be somewhere between the error for a Dop-the path length through regiddis larger. Thus, the opacity,
pler line and the error for a Lorentz line; in other words, theand hence the escape factor, depends on the position of the
error for the Doppler line is the upper limit for all practically emitting atom. This fact has to be included in the simula-
occurring line shapes. Further examples of the results fountions. As shown in Appendix D, the geometry correction can
for the entirely excited layerg=1) are presented in our be written by modifying the opacity — exactly as for the
previous work[14] (note that the correction factor for the single-mode correction. More precisely, we make the substi-
entirely excited slab vanishes tution 7— 7(1+Ag), whereAg=A-=0.19 for a cylinder
and A;=Ag=0.33 for a sphere in the cage-1. This de-
scribes the change in the escape fa¢a®m compared to the
usual escape factor in a cylinder or a sphehat is due to a

The computations in the plane-parallel slab are simplifiechollow-cylinder or hollow-sphere geometry. This geometry
by the fact that we can introduce the optical-density coordiis valid only at the beginning of the decay process; at later
nate 7 in Eqg. (36). In the first moment, the whole regigh  times, we have the normal geometry. The correction must
corresponds ta=0; i.e., the escape of the photons is inde-thus be implemented at the beginning, and vanishes at late
pendent of the geometrical positianwithin region A. The  times; this problem is similar to the single-mode correction
local escape facto®d, (r) is determined essentially by the described in the previous subsection. We can thus use Eq.
linear opacityr=Kkyn(R—r,) of the regionB [see the sketch (38) for taking into account the geometry correction factors.
shown in Fig. 1c)]. Assuming Eq(10) to be valid for all There is, however, one important difference: for the
types of cells under investigation we thus simulated formallysingle-mode correction, the correction was large when the
the situations occurring in the linear geometry. For curvilin-initially excited region was very smalp=0, and zero for
ear geometriegcylindrical, sphericdl the above simplifica- p=1. For the geometry modifications, the correction is zero
tion, however, is not possible anymore. This fact can be unfor p=0 and large forp=1, so that it is reasonable to ap-
derstood more easily considering a sphere. A photon emittegroximate it as\ g(p) = p“A¢ [compare with Eq(39)]. Thus

FIG. 4. Same as Fig. 3, but with Lorentzian line shape.

B. Corrections on the geometry
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TABLE lll. Correction factorsA for different geometries.

Layer Cylinder Sphere
k=1 k=2 k=3
A 0.27 (1-p) 0.30 0.45
Ap 0 0.30 0.45
A 0 0.19 0.33
the total correction A(x=2,3), i.e., the sum

A=A, ,+Ag(p), is nearly independent gf. We will take
A=[A,_o+Ag(p=1)]/2, that, as is seen from Table | and
Egs.(D9) and (D10), corresponds to a 10% accuracy in the
evaluation ofr for k=2,3. Table Ill shows the values df
for the three geometries under investigation.

Let us summarize the results presented in Secs. V A and
V B by writing the relevant rate equations with all the cor-
rections included:

N*(tT)/N*(0)

dN* x g(m=05 291
W:_FN ﬂef (T(t)), (40) ...................
0.0 7T
N*(t) N* (t) 0 10 20 30 40 50
=M1 _ 7
(t)=7 (1 n’éV)( + ngVA>' (41 tr
FIG. 5. Cylinder with #™=10, p=0.7: normalized decay
dNA(t) (m=05) N - curves for the total number of excited atoms in all the considered
dt Ger O (TA(DINA(H) +T(N* —NR) volume (N*), in regionA (N3) and in regionB (N§), for Lorentz
(a) and Doppler(b) profiles. The solid lines represent the result of
X ﬁex(rﬁ\ex)(t))\))\_l, (42 the numerical simulations, according[tt?]; the dotted and dashed
lines are the solutions without and with correction factors, respec-
tively .

NK(t))(HA N ()

TA(t):T(AM)< 1-— A*—)- (43
NsVa NsVa The basic idea of the correction factor is the following: if
the opacity of regiorA is small(i.e., at the beginning of the
The appearance of the factorin Eq. (42) will be discussed  decay, the probability that a secondary phot¢emitted in
in the next section. _ _ region B) is absorbed in regio® increases approximately
~ The geometry correction must also be carried out for rejinearly with the opacityr, [see Eq(34)]. If the opacity of
gion A. The prime excitation of regio corresponds for- yegionA is large(i.e., at late timeks a further increase in the

mally to the casep~1. We decided, nevertheless, to usegpacity hardly changes the reabsorption probability. If we
A=A in Eqg. (43) (see Table Il] in order to avoid discrep- thus use a correction factar so that

ancies between Eq$40) and (42) for p~1 [for the same
reason, in Eq(42) the escape factof{"=°% is chosen in- Fex(Ta(1)) = Fed N TA(D)IN T, (44)
stead of9?) entering Eq(31)]. However, the best choice for

Al is Ag=Asc as is determined in Appendx D by EGs. it does not affect thél% curves at the beginning of the decay
(D9) and(D10). A7A(t)<1 [see Eq(34)], when no correction is needed. On

The effectiveness of the corrections is demonstrated ifhe contrary, thex factor influences strongly the value of
Fig. 5, which shows the excited-state density in a cylinderﬂex for large 74(t). A proper choice o thus allows one to
with and without the correction factor: the accuracy includ-gccount for the space diffusion effects for excited atoms
ing the A factor is better than 10%, in agreement with the coming from radiation trapping processes in regiin
above presented analysis. The derivation for the factok is given in Appendix E.

For the three geometries under consideration, we obtain
C. Corrections on the atom distribution n§

The third assumption in the derivation of E@®1) was , T 1—p%2 1—p(1—8/(3m)) M)
that the excited-state atoms in regiBrare concentrated near )‘K=1_Z 2p 1—p2(1— mld) Aj=a(ma™),
the boundans to regionA. This assumption is valid at the (45)
beginning of the decay, more precisely, during the time in-
terval O<t=<T;,., while the total excitation in regioB is

i it i i 4 1-p%2 1+

growing. However, it is not valid at late times, where the 2 _ p p A oo p(7M) (46)
distribution has the shape of the lowest-order mode. k=237 3p2  1-—p33TK=2A D
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probe radiation(e.g., radiation tuned to a higher-order reso-
nance transitioninto the cell during the decay phase, and
observe the absorption of this beam. This provides a mea-
surement for the ground-state density, and allows a direct
determination of the parameters that we discussed in the pre-
A - vious subsections. By using an appropriate experimental de-
Lorentz “X;_ sign, it can even be used to determine the spatial distribution
of ground- statdor excited-stateatoms[31]. This requires,
. however, additional experimental efforts. The other possibil-
. ity is to observe just the fluorescence radiatibbemerging
e M B from the vapor cell. There is, of course, a well-defined rela-
tion between the excited-state distribution integrated over the

whole cell and the emergent radiation: if a photon escapes

(a)

N*(t)/N*(0)

(b) from the cell, the integrated excited-state density must de-
=) crease by one emitting atom. Mathematically, we can formu-
3 o4 Lorentz late this as
=

J AN 48
o« —
H i i TR (48)
0.01
0 50 100 150 200 250 While this relation is well understood and extensively
t (ns) used in linear radiation trapping, the nonlinearity gives rise

_ _ _ ) _ to some new interesting phenomena that are not clear at first
~ FIG. 6. Entirely excited cylinder with OpaC!WM):lo: normal-  glance, but that can be described by our analytical formula-
ized decay curves of the total number of excited atéasnormal- iy |t js & common opinion that the radiation trapping leads
ized decay curves of the emerging fluorescehd®). The solid and 1, 5 increase of all time scales involved in the decay pro-
dashed lines represent the results of the numefd@land analyti- - ;oo - egsentially the effective lifetime of the fundamental
cal [Eqs'. (49) and (50)] .sm)ulanons. The dotted line represent a mode. The nonlinear effects arising from medium bleaching
decay with the natural lifetime. . o

appear to be out of the frame of this description: the emer-
) 3 1-p22 1+7p/3 " gent radiation can decay with a time constant thaagter
Ne-3=g B3 1_04p2AK:3(T§\ ). (47 than the natural lifetime.
p ' This phenomenon, first predicted by numerical simula-
The multiplierA is determined by EqE2). It reflects the  tions in a slab geometrj1 3], can be explained qualitatively
\-factor dependence on the opacity of regidnThe A val- by the role of “optical shutter” played by the bleached va-
ues as a function of the opacity are presented in Fig. 9.  por. The subnatural decay occurs because the photon flux
Figures 2—6 demonstrate that our analytical approximaemerging from the cell decreases not only due to the smaller
tions [Egs. (40)—(47)] provide high accuracy in the evalua- number of excited atoms, but also due to the reabsorption,
tion of NX andN§ over a large range of variations of both which increases with time. For the case of a completely ex-
the opacity and laser beam radius=pR. The accuracy is cited cell (p=1), the medium opacity at the beginning of
higher for the slab casésee Figs. 2-% where we get an the processt(=0) is zero. Thus, the photons can escape
accuracy better than 5% for both large and small opacitiedreely from the cell. During the deexcitation processndf,
over the whole range gf values. The error for the cylinder radiation absorption takes place, and photons are trapped by
is only slightly worse, but always smaller than 10&ee the medium.
Figs. 5 and & The reason for this is that the geometry cor- As an example, Fig. 6 shows a typical decay curires
rection introduced in Sec. VB is of course not perfect, somerical simulation, solid curvgf the emergent radiation
that we have an additional source of erftire slab does not during excitation of the 3— 3P transition of sodium vapors
need this geometry correction at)allThe distribution of  (natural lifetimel’"*=16.7 n3 for a cylinder geometry, in
excited-state atoms in regidh is also accounted fofas far  the case of entirely excited gas medium=(1). Superim-
as the reabsorption rate in regidnis concernedd The fact posed on the numerical data are theoretical curves obtained

that the accuracy foN is worst of all three considered for optical opacity7")=10 for both Doppler and Lorentz

variables N*, NX, N%) is mainly due to the fact that profiles. The decay of the total excitatidif shows a behav-

ior that at the beginning decays with the natural lifetime
(also shown in Fig. 6 with a dotted liheand later becomes
slower. However, the fluorescence intensity —dN*/dt
exhibits a very fast(subnatural decay behavior, within a
typical time scale well below the natural lifetime, as ex-
plained above.

We can describe this effect by explicit analytical formulas

Basically, there are two ways to observe the decay pheEgs.(13) and(14), with the corrections of Sec. MIn Ap-
nomena in an atomic vapor. One possibility is to send gendix B it is shown thatfor p=1)

& is much smaller thal* at the beginning of the decay,
and is computed as the differenb& —N3 . Even a com-
paratively small error iltN* ,N can thus produce a consid-
erable error inNj .

VI. SUBNATURAL FLUORESCENCE DECAY
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2[(1+A) using Eq. (49, A=0)] show the total photon flux
J=—dN*/dt emerging from the gas medium. Some dis-
crepancies between the experimental data and the theoretical

=1D)(p)=
=) S5 PO (A M) (1+A)(1—p)]

In(p) A results occur, due to the actual acceptance angle of the opti-
x| = 1Tp+ 5(1=p)|, (49 cal fiber (=60°), which is lower than the 180° angle as-
sumed in the analytical solution. Numerical simulations tak-
ing into account the actual detection geometry of the setup
tr=10(p)= 1.5/(y1+4A) 1 have shown an even better agreement with the experimental
S OO M2.25(1+A)(1-p)] V1-p results, as expectdd6].
idu
xf T\/ 1—u)(1+Au), (50) VII. SUMMARY AND CONCLUSIONS
p
We have derived an analytical method for the computa-
wherep=N* (t)/N* (t=0). tion of the decay of an atomic vapor excited by a strong short

The evaluation of the slope of thkcurves provides the laser pulse. The strong excitation leads to a nonlinearity of
local decay rate constaht for the fluorescence emission: the decay process. We derived explicit equations for the
excited-state density averaged over the whole cell, and the

1dJ excited-state density in the initially excited region. The cor-

Per=— Jdt (52) responding radiation rate constatgscape factoysvere pre-
sented in the form of universal analytical expressions, allow-
According to Eq.(40), ing rapid evaluation for arbitrary line profiles. We first
derived a very simple approximation that describes the basic
dinN*  dIind d features of the process. The accuracy of the method was then
Per=— Tdt dt I'ded7(1))— a'n'}ef(T(t))- increased by introducing correction factors. These correction

(52)  factors are not some arbitrary numerical fitting factors, but
rely on a physically motivated origin, and thus provide an
Fort~0, and opacityr~0, the first term of Eq(52) gives insight into the mechanisms that affect the excited-state den-
the natural radiation constaht, but the second term, being sity. The equations are valid for all practically important line
positive (9 decreases for increasing, tends to increase shapes(Doppler, Lorentz, and Voigt The accuracy of our
the I value. analytical formulations was shown to be better than 1086
Experimental confirmation of the subnatural decay haddoppler line shapgesby comparing them to numerical solu-
been provided by an experiment involving th8-3 3P tran-  tions; for Lorentz and Voigt line shapes, the accuracy is even
sition in sodium[16]. Measurements were done in a Pyrex- better.
glass cell shaped as a flat cylinder of height2 cm, with The behavior of the excited-state density is affected very
a diameter d=5 cm. The sodium density wadN= strongly by the nonlinearities. The excited-state density de-

1.2x10* cm 3. This experimental geometry correspondscreases much faster than one would expect on the basis of

closely to a slab(see [7,28]) with a total thickness the usuallinean trapping theory. Most important, the radia-
L=2R=2 cm. For a Doppler profile this corresponds to antion emergent from a cell can decay faster than with the
opacity 2-M =11, natural lifetime. This fact was confirmed by analytical com-
The whole vessel containing the sodium atoms was ex-
cited by a pulsed dye laser tuned to th®,3— 3P, transi- ’
tion at 589.6 nm. Pulse duration was 5 ns full width at half 3
maximum, pulse energy 3 mJ, and the spectral linewidth was
about 0.015 nm. For the conditions of the experiment, the
line profile was determined only by the Doppler broadening.
The resonance fluorescence light was collected through a
flat optical window by an optical fiber and detected by a fast
silicon photodiode(rise time <0.3 n9g, connected to a fast
digital oscilloscopg HP54520A, bandwidth 500 MHzThe
fluorescence signal was attenuated by means of neutral den-
sity filters in order to prevent detector saturation and ensure
its linear response.
The inset of Fig. 7 shows the fluorescence siddats as
a function of time for the first 50 ns after the laser shot. The
dashed line corresponds to the natural decay curve of the
excited sodium levell{ "'=16.7 n3. As can be clearly seen
in the figure, in the first stage of the proce$s(0 ns) the
fluorescence signal displays a decay much faster than the FiG. 7. Normalized decay of the emerging fluorescence: experi-
natural one, as predicted by the theory. mental data from Ref[16] (open circle} analytical result§Egs.
Figure 7 shows the fluorescence data recorded in the tota48) and(49), with A=0] obtained for an entirely excited slab with
decay interval. The solid curvdanalytical results obtained p=1, decay with the natural lifetimf ~*=16.7 ns(dotted ling.
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putations, numerical simulations, and experiments. The factor A, (p) depends on the geometry, bein@
The results and methods presented in this work can ba,_;(p)=1 (spherg (i) A,_»(p)=27d(p,) (cylinden;

used for the interpretation of experiments where a laser pulsgii) A ,_,(p)=(27)25(py) o(py) (layen.

excites a vapor, as, in particular, the investigation of photo- The inverse Fourier transform fa¥(p) provides a suit-

resonant plasmagsee[21]). Important parameters of these gple representation for the local escape factor:
plasmas, such as the ion density distribution, electron energy
Jur2([PIR) Jur2-1(lpIr)

distribution function, etc., are strongly related to the excited- 0 N

state distribution, which we computed in this paper. There is  9(r)= JO dlp| R T2 R [1-G(|ph],

also the possibility to solve, within the frame of the pre- (A5)
sented method, the inverse problem, i.e., to obtain the radia-

tive and collisional effective rate constants using the integralvhich is factorized on the variabld@®,r. The coordinate
characteristics of the excited medium. The methods deveintroduced in Eq.(A5) is (i) the distance from the sphere
oped in the present work for transferring the results obtainedenter, for k=3; (ii) the radial cylinder coordinate, for
for a plane-parallel slab to a curvilinear geometry can bex=2; (iii) r=|z|, that is the distance from the center plane
useful to solve the ionization and radiation trapping phenomof the layer, fork=1.

ena occurring in excited mediums with strongly space- The rate constant8{” introduced in Eq(9) are obtained
inhomogeneous spectral characteristics, as, for instance, gy averagingd(r) over r space with a weight function

the spherical geometries typical of aerosol plasgsae, for (1) [according to Eq(9)]:
example, Ref[32]).
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A7
In the derivation of Eq9.18) and(23), we have to analyze (A7)
first the local escape facta¥(x), which can be suitably ex-  the following expression fo{!" is obtained:
pressed as
[(k/2+m+1 » J,
» o o~ o = D e f dpdp) 2P
ﬁ(x)zl—f f fd%?e(x—x)ag )(X),  (Al) I'(x/2) 0 p
X[1-G(p/R)]. (A8)

where d3x indicates the volume integration element
dx,dydzin the (x;,y,z) space-coordinate system. The char-The asymptotic expression far=konR— given in Eq.
acteristic functionﬂffh)(i) restricts the integration in Eg. (18) can then be obtained from E@A8), if the following
(A1) over the volumeV under investigation. For uniform asymptotic form[5,15,29 is used:
spatial distribution of ground-state atoms, the kernel
G(x,X) [see Eg.(4)] depends only on the difference A _ Ty 2y
(x=X), so that the integral operator in EGA1) is of the ! G(p/R)kon_R>1$in(7Ty)F(2+Zy) PTT(konR),
convolution type. A convolution operator in the space do- (A9)
main becomes a multiplication operator after Fourier trans-
formation of Eq.(Al): along with the tabulated values for the integral involving two
Bessel function$29].
F(p)=[1-G(p)]19<"(p), (A2) The integral expressiofA8) turns out to be identical to

Eq. (23 after insertion of the expression given in E&3)
© ¢k, [p| and some manipulations based on arctan-Bessel functions
ocWarctar{ )dv, [29].

k

G(p):f d3xexp(i§->Z)G(x):f
(A3)

APPENDIX B
where 9(p),G(p), 9 (p) are the Fourier transforms, in
the space of the=(py,py,p,) coordinate, for the corre-
sponding space functions. 1du 1

The function 9™ (p) is well known[29] to contain a |(p):JpT (T (L—U) (1t Au))
Bessel functionl,, for the geometries here considered:

We shall evaluate here the integral

(B1)

acch) " i that is the modification of the integral expressed in @d)
IR (P)=(27R)““J,a(IpIR)[P| “"*A.(p). (A4)  according to the correction given in E@1).
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The most straightforward way would be to use the high
opacity factorization introduced in E¢RO) in order to write
a factorization for the integral of E¢B1):

T
_ (p) T(p)—

tau 2 2
= — —(1-w"(1+Au)“”.
(M)_}mﬂef(T(M)) u ( ™ )

fpd

However, the above approximation is not valid for
p~1: the actual behavior of the functidifp) for p~1,

1(p)
’ (B2)

I(p) = (1-p), (B3)
p—1
differs strongly from thg(p) behavior:
~  (1-pPrt
I(p) = ————(1+A)>". B4
(P) = =y rg(1+) (84)

We thus have to find a different factorization of EB2)
that also satisfies the behavior of E83). Such a transfor-
mation is given by

1

P S L p s a2y ) P
(85)
~ 2vy+1 idu
I(p)= (1+A)27(1_p)zyfpv(l—u)27(1+Au)2*/.

(B6)

It is straightforward to prove that Eq$B5) and (B6)
show the factorization of EqB2) for M) (1—p)>1 be-
cause of EQ.(20), and lead to Eq.(B3) because all
S (r)~1 for 7~0.

Equations(16) and (49) presented in the text can be de-
rived by explicit integration in Eq(B6) for y= 0.5 (Doppler
profile); Eq. (15) follows from Eq.(B6) for y=0.25,A=0
(Lorentz profilg. Also in this latter casdlLorentz profile,
vy=0.25) butA>0, in fact, the integral in EqB6) [see Eq.
(50)] can be expressed as a complicated combination of e
ementary function§29]. Equationg15), (16), (49), and(50)
turn out to be sufficiently accurataithin a few percentfor
all 7™ p values and they can be employed for evaluatin
the integrall (p) within the precision of our approach.

APPENDIX C

As mentioned in Sec. V, we have to analyze two limiting
linear problems initial distribution uniform, p=1, and §
distribution, p=0) in order to find the correction factors for

N. N. BEZUGLOV et al.

1

N*(t)/N*(0)

e
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t /e,

FIG. 8. Normalized decay curves of the total number of excited
atoms in an optically thick slab, Doppler line, a weakly excited
case. The time is measured in units of the ground-state Holstein
time 7). The solid lines represent the exact analytical solutions
for p=0 [Egs.(C1) and(C2)] andp=1 [Egs.(C1) and(C3)], as
indicated in the graph; the dashed-dotted line gives the solution
obtained with our one-mode approa@oth p=0 andp=1); the
dashed line represents the solution obtained taking into account the
correction Eq(C22) for the casep=0 as discussed in the text.

4 _ _
fo(t)= ;exp(at )arctaexp(—at )], (C2
_ 8 _ engé’t)dy l+y
fl(t)—?exp(at )fo EI =) (€3
4 11in(E) Lt ca
a_§+ 12 In(27)’ t= Tg;”. €4

Both NJ_,; (t=0) values are normalized to unity, and
the timet is measured in units of the effective lifetime of the
fundamental modefgf*)=1/(l“gf) (Doppler profilg. The
temporal behavior of botiN?_ ; is shown in Fig. 8(solid

urves; this result is equivalent to taking into account all
modes with their respective decay time constants. The one-
mode approacliFig. 8, dashed-dotted curyei.e., Eq.(8)

with the assumption afn=0.5 for all times, is equivalent to

gignoring all the higher-order modéwe neglect here the dif-

ference between the lowest-order mode decay factor
gr= 94 and 9= values.

As can be seen in Fig. 8, the functiofg, in Eq. (C1)
have a monotonic behavior frofig ;(t=0)=1 to

the one-mode approach. The geometrical quantization tech-

nigue developed ifi30] gives the following expressions for
N*(t) in the Doppler line case:

t
p=0(t)= fo,1(t)exl{ - W) : (Cy
ef

with

fp—0a(t) =c, (C5)
t—o
with
4
cﬁ)o:;:l.Z?, (C6)
(D) 8
¢,21=—=0.81. (C7)
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For the initial § distribution, the fact that is larger than [(k/l2+2y+1)T(y+1) )
unity can be interpreted in the following way: at early times, C= T(2y+ DL (k24 y+ 1) F(—=v,x/2;1+ k/2,p7),
fewer photons can escapbecause the emitting atoms are (C14)

concentrated in the center of the medjurfihe fact is also
reflected in a larger total density at late times; i.e., dne-
plitude of the lowest-order mode is larger. For the uniform
initial distribution, the explanation is the other way round.
We have thus derived the error at late times for the speci
case of an initials distribution and an initial uniform distri-
bution. For the more general case of initial function
n*(x,t=0)=n*(r) with 0<p<1, the results can be ob- - [(xl2+2y+1)T(y+1)
tained from the usual Fourigmulti mode theory. In this r2y+1)Ir'«2+y+1)’
case, the excited-state distribution is given by

whereF is the hypergeometrical functidi29].

The expression EqC14) can be simplified by using the
a?reries expansion of the functida [29] for the two limit
casep=0 andp=1:

p=0, (C15

p=1.
(C16

_ T(kl2+2y+ 1) (y+ DT (k/2+1) 1

0= () (wlxeq-Tay, (€8 T TRyt DIAw2ty+D)  p

where, according to Dirac notationéy|x)= i(x) is the ) )
normalized space distribution for themode, g, is the cor- Table Il gives the values of the factor (in brackets for

; T _ Doppler profilg, evaluated according to Eq$C15 and
Lecip onding escape factor, affdf) indicates the scalar prod (C16 for the geometries and the spectral profiles investi-

gated in this paper.

_ Rdrr<—! The difference £10%) between the values appearing
(f|f)=f Wf(r)f(r). (C9 in Egs.(C6) and(C7) and those reported in Table Il in brack-

0 K ets (for slab, Doppler casgp=0, p=1) are caused by the
fact that the spatial distribution of the fundamental mode is
. not exactly identical to the power-law distribution with
r<|¢] ?ﬁgg:;}:g};gg;’;y regime, foros all terms in Eq m=0.5. This fact produces some error in the evaluation of

) : ' " the overlapped integrals);|n* ) and( | n,—o) entering the
EICE)(')) e\);;ﬁizth tr_:_?‘ii ;g;?lr(lp)gwteohg\]/i fundamental moderatio co/Cy. Note that, wr;en exploiting the variational
' : ' method for the evaluation of thgy factor for the fundamen-

* (1) /n* . _ tal mode, overlapped integral{ss,|f) of the same kind are
N*(O)=(m, (DInm=0) = (M [¥r)drInm-o)exp—T'git) encountered. Thus, the occi{rrenge of a similar discrepancy
(=10%) between the factos{"=%* andg; (see Table)lis

=coexp(—I'gst), (C10  not surprising. As these discrepancies are observed also for
. , ) the cylinder and sphere geometri@oppler case, see Table

wherenp,_o(x) denotes the uniform functiom,,_o(X)=11in ) "in‘order to reduce the problems related to the one-mode
the volumeV, and i; is the normalized ground-state mode. approach for the Doppler case, we have to increasecthe

Functionn? (r) is of the space-step typer; =1 when

t—o

An approximate expression f; is [see Eq(12)] values(in brackets, Table )Ifrom the declared unit value by
2\ a factor 10%, as reported in Table Il. On the contrary, for the
Yi=Ro| 1~ 22 (c1)  Lorentz profile thes(f'=%% andg; are almost identical, since
the escape factor depends much less on the spatial distribu-

tion of the excited atoms, so no correction to thealues is
o T(xlz+2y+1) (c1p  required.
O TI'(kl2+1)I'(2y+1) The above error analysis also forms the basis for the in-
troduction of a correction factor. Let us consider the case
where the constand, is the normalization factor for the p=0. At early times, we have to increase the optical opacity
space weight function~%/(R*/ ) appearing in Eq(C9). by a factorA [+™M —+M)(1+A)] in order to change the
According to our approachsee Eq.(11)], the temporal  steepness of the decay curigee Fig. 8, solid curyei.e., in
behavior NZ,, with the initial condition N*(t=0)  order to recover the behavior computed above. At late times,
=(n%[np_o) is this A correction must vanish. At intermediate times, we
_ need some kind of interpolation. The easiest way to include
NZpd ) =Coexp( —T'gst), (C13 such a time-varying correction is to take

o . ) A=A N*(t)/[N*(t=0)]. This leads, in Eq(11), to the re-
with Co=(n} |npn—o). The ratioc=c,/C, plays the same role placement:
(late-time deviation from the case that the initial distribution
is the fundamental modleas that of the constart in the
decay of Eq.(C5. The decrease ot from the initial T<M>HT(M)( 1+A
(t=0) unit value is a measure of the inaccuracy of the one-
mode approach. Using EqeC10) and (C13), we obtain for
C: The corresponding solution,

N"(®) ) (C1

PN*(t=0)
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tF—Jl du (C19 9 —f dﬂfd p( 9, — ) (D2)
v ot =0 udlTI (G M1+ A u))’ c(r)= 64T veLeX ”singcosp, |’

ef

is obtained fop~0, whenV,/V~ p“~0. For large Doppler where ¢, 6 are the angles determining the photon flight di-
opacities ¢M)>1), the factorization (™)1  rection in a spherical coordinate system centered,iand

+Apu))=(1+Apu)/1‘}ef(r(M)) can be introducedsee Eq. d{Q=sinédad¢ is the solid angle. For a sphere, the expres-

(20)], which allows to write Eq(C18) as sion for ¥ is similar, but in this case the term gimust be
dropped.
_ N* (t) N* The inner integralintegration over the frequency variable
trofy 0'5)(7('\")):_|”(m)Jr 1—m)Ap- v) gives a transmission factof [Eq. (19)] (for the path

(C19 determined byd and ¢). Using the factorization properties
of T [Eq. (20)], we can write Eq(D2) as
For N* (t)<N* (t=0) (one-mode regimgit is

N” t 9en)=T(r) [ G s> [ oo 4,
0 0o 2m
N*(t=0), exp( ) W) expid,). (€20 o8

t—o ef

with the properties
Equation(C20) is identical to the exact solutiofEgs. (C1) prop

and (C5)] for t—, if we make the following substitution r2

Rsing,=rsing, co(¢p,)=1— ?sinzqs, (D4)
explA,)=1+A,=c. (C2)

where the notations of Fig.(d) have been used.

9 Two limiting cases can be evaluated easily: emission in
the center of the hollow cylinde(i.e., r=0) and emission
close to the boundar$ (r=R). In the former caseg,=0,
while in the latter,¢,= ¢. With these simplifications, Eg.

The dashed curve of Fig. 8 has been obtained by using E
(€19 for AP=cl®)—1=m/4—1. It demonstrates the
considerable improvement of the accuradgy better than
5%) achieved by including the modifications of EG17) in

the solution of the master rate equatidtg. (11)]. (D3) reduces to

For the casep>0, the corrections are smaller due to the
nonlinear effects mentioned in Sec. V A. Moreover, in the Jal(1+y)
casep=1, the bleaching of the vapor at early times causes ﬁC(r:O):T(T)ZF(y—HS)'

the (c,-,;—1) value to be practically zer@ee the discussion
in Sec. VA. Thus, theA , variation onp from the initial

valueA,_;=0toA,_y=c,_o—1 can be approximated as de(r=R)=T(7)

1+2y (D5)

A,=(1-p")(Cp=0—1) . (C22 When we compare these expressions to B@ with

m=co (§ localization of the distribution, the expression in
The appearance of the power in Eq.(C22) is caused by brackets being equal to unjtywe see thatdc(r=0) as
the fact that the same power index appears in Eg$5 and  gjven in Eq.(D5), is identical tod'?(7) for k=2 (cylinden.

(C16) for thec factors. Similarly, 9c(r =R) is identical tod{?(7) for k=1 (slab.
This can also be interpreted physically: a hollow cylinder as
APPENDIX D seen from its center is a normal cylinder with optical thick-

Th idered rical del f " i dneSST; a photon emitted close to the boundary, on the other
e considered geometrical model for a partly excited, . “wgees” 5 plane-parallel layer.

cylinder or sphere at the beginning of the decay is a cylinder N - )
(o a pherei a ol nsigeSImating he regon i 1,1 5C26¢ aEok o -3, detemining et oo
out absorptiojy filled with emitting atomg[see Fig. 1d)]. volume:
We investigate here in detail the case 1. Photon absorp- '
tion occurs at the cylindeor spherg¢boundarys, in a layer Rdrr<—1
with a small thicknessR—r <R, but with a rather large 9 ,( T)=J Wﬁ(r)' (D6)
optical opacity,r=kon(R—r,)>1. 0 K

Since the geometrical dimension of the absorbing region
(R—r,) is small compared tdR, we can approximate the
optical pathkynAL traveled by the photon emitted at dis-
tancer from the cell centefsee Fig. 1d)] as

The integration over can be performed analytically for
J(r) [Eq. (D3)], exploiting the properties given in E¢D4).
The final results for both cylinderQ) and sphere$) are

P LRACAL LT IR (D7)

konAL= 1 \/_; T(y+2) ef,k=2

T
cosh,’ (DD
Here, the angle, lies in front of the side in the triangle 909 =

= 90
OrR [see Fig. 1d)]. For a cylinder,d(r) is defined as P~ 1+ 2413 etn=a(7), 08
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where the subscripk indicates the geometry according to A PR I P P e
the notations introduced for E¢L8). 2.0
With the factorization of Eq(20), we can rewrite Eq.
(D7) in such a way that we have a correction in #rgument
of the escape factor. 1.5
For a sphere, we use the approximation+@y/3)
~(1+1/3)%?, to get

A
o
[P I BV S |

92, =0, -a(1+2)7), As=3. (DY) i

For a cylinder, this procedure is more complicated. Let us 0.5 -
introduce the functionf(y)=a ['(y+2)/[2T(y+1.5)]. ——slab(k=1) [
A series expansion ovey for such function gives, for the o gy'r']’;cr’:’(g‘fs?) i
first terms, f(y)=1+[(In4—1)/2]2y=[1+ (In4—1)/2]?". 0.0 P — -

R e i T R o e ——
0 2 4 6 8 10 12 14
(M)

A

Including this series expansion into E@7), we get

In4
(C) = 9(9) — ~
I, =Oefu=2((1+A)7),  Ac= 2 =0.19. FIG. 9. Dependence af determined by Eq(E2) on the the

(D10 optical opacityrgM) of regionA. All curves are normalized to the
unit value at the infinity ¢M—o) for three geometriesi) a
sphere—«=3 (dasheff (ii) a cylinder—«=2 (dotted; (iii) a
APPENDIX E slab—«=1 (solid).

The factorA mentioned in Sec. V C can be computed According to the considerations presented above, the
from the requirement that the behavior at late times shouldnalysis of Eq(E1) for the Doppler profile casgp=0.5 is
be correct. Let us thus rewrite the rate equati®) for the  the most important. The approximation given in EG2)
final stage of the decay, ruled by the fundamental mode chaellows one to write explicitly the values ®* and N3} in-

acteristics whemN:* (t) ~N;* exp(—T'gst): volved in Eq.(EJ):
" 1 " R re PR re
=i (7 INA=—=gr (A INA+ (N* = NR)& e 7AN). N*=J drr i\ 1- o, Nz=f drr iy 1-=.
0 0
(ED) (E4)

It is worth while to recall that we make no difference  The final result, which can be obtained by exploiting the
between the escape factays and ﬁgT:°'5). Thus, Eq(ED ratio 99/g; reported in Table I, and performing some ma-
allows a straightforward determination of thevalues: nipulations, gives expressions bffor the three geometries

under investigation:

)\1+27(1_p27):

N_NX Fex(©)
=2 A (M)' _ 2 _ _
Ni i) (1a") N2 7 1-p9/2 1 p[i. 8/(371')]A ()
<14 20 1-p*(l-mla) VAT

Vel Ta") gi() (E5)

A(T) = , E2
=G () Del) €3
5 4 1-p%2 1+p o
by using the factorization expressed in Hg0) for large Ne=2=3- “3,2 1-,230=27a"),  (EO
(M) (M) . ™ 3p P
T y TA .
2
ge(7™M) [ 7,4\ 27 ) , 3 1-p 12 1+7pl3 )
—_— | — = Y )\ —_2— = AK: T . E
gf(T)(AM)) - P k=3 8 5p3 1_0.4‘)2 3( A ) ( 7)
Fed NTAN 1= Do TAN 1727, (E3)

Speaking strictly, in Eqs(E5), (E6), and (E7), the term
\/1—p2 has to be stand instead of the multiplier{ 2%/2). It

We have introduced into EGE2) a variableA depending means thatl\~0 whenp~1; i.e., we have no correction
on the regiorA optical opacity. For the sake of simplicity, a factor due to regiorB, if region B does not exist. However,
special normalization\ (7{")=%)=1 is chosen for all ge- if the factor\ has zero value, the second equality of EEp)
ometries under consideratigsee Fig. 9. Note that, from the fails to be valid. For this reason we have replagdd- p? by
asymptotic behavior ofdq(7) [see Eq.(34)], it follows its expansion (t p?/2).
Fex!9:=(27) ﬂ(ef)/(ng) for large 7. This substitution does not affect noticeably our results for
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p<0.8. On the other hand, fg&>0.8 the regiorB cannot tion in regionA that is physically reasonable as it was dis-
influence strongly the zon&-excitation, so that the exact cussed above: if all emitting atoms are assumed to be near
value of\ turns out to be of secondary importance. region A (i.e., without correctiojy then, of course, also the

It is interesting to note that when,>1 and 1>p the reabsorption rate is higher than when the emitting atoms are

correction factoi is larger than unity indeed. This fact leads distributed all over the regio® (which can have a large
to a decrease of the rate constai for secondary reabsorp- size).
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